Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
2 tháng 10 2021 lúc 7:32

Lời giải:

Áp dụng BĐT AM-GM

$A=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\geq 2\sqrt[4]{\frac{1}{xy}}$

Cũng áp dụng AM-GM:

$4=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 4$

Do đó: $A\geq 2\sqrt[4]{\frac{1}{xy}}\geq 2\sqrt[4]{\frac{1}{4}}=\sqrt{2}$

Vậy $A_{\min}=\sqrt{2}$ khi $x=y=2$

 

YUUKI
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:33

Lời giải:

Áp dụng BĐT Cô-si và Cauchy-Schwarz cho các số dương ta có:

$A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\geq \frac{1}{x}+\frac{1}{\frac{x+y}{2}}=\frac{1}{x}+\frac{2}{x+y}=2(\frac{1}{2x}+\frac{1}{x+y})$

$\geq 2.\frac{4}{2x+x+y}=\frac{8}{3x+y}\geq \frac{8}{4}=2$

Vậy $A_{\min}=2$. Giá trị này đạt được tại $x=y; 3x+y=4\Leftrightarrow x=y=1$

dsadasd
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 16:08

\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)

\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)

Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)

\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)

\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)

\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)

\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

Lê Vinh Hưng
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 11:47

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

Akai Haruma
30 tháng 4 2023 lúc 11:47

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2018 lúc 7:10

Koren.
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 15:01

Lời giải:

PT hoành độ giao điểm:

$x^2-(m-3)x-m+4=0(*)$

Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt

Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$

$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$

Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$

Để tam giác $OAB$ vuông tại $O$ thì:

$OA^2+OB^2=AB^2$

$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$

$\Leftrightarrow x_1x_2+y_1y_2=0$

$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$

$\Leftrightarrow x_1x_2(x_1x_2+1)=0$

$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$

$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$ 

$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)

le thi thu huyen
Xem chi tiết
Tuấn Anh Phạm
8 tháng 8 2017 lúc 23:06

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

hbfbhdfchcjxcfdfs
Xem chi tiết
màn đêm chết chóc
11 tháng 1 2020 lúc 15:17

a, x = 0 ; y = 0

hoặc x = 2 ; y = 2

b,x = 0 , y = 0

Khách vãng lai đã xóa
Chu Công Đức
11 tháng 1 2020 lúc 17:15

a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)

\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)

Lập bảng giá trị ta có: 
 

\(x-1\)\(-1\)\(1\)
\(x\)\(0\)\(2\)
\(y-1\)\(-1\)\(1\)
\(y\)\(0\)

\(2\)

Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)

b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)

\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)

Lập bảng giá trị ta có:

\(x-1\)\(-1\)\(-3\)\(1\)\(3\)
\(x\)\(0\)\(-2\)\(2\)\(4\)
\(y-1\)\(-3\)\(-1\)\(3\)\(1\)
\(y\)\(-2\)\(0\)\(4\)\(2\)

Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\)\(\left(-2;0\right)\)\(\left(2;4\right)\)\(\left(4;2\right)\)

Khách vãng lai đã xóa
Blaze
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 8 2021 lúc 14:07

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)

b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)

 

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 14:16

c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)

nên \(\dfrac{y}{15}=\dfrac{z}{21}\)

mà \(\dfrac{x}{10}=\dfrac{y}{15}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

Hokage Naruto
Xem chi tiết
Hokage Naruto
11 tháng 7 2021 lúc 21:19

giúp e với ; plz 

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 23:04

Bài này ko biết làm theo kiểu toán sơ cấp, nhìn điều kiện \(x^2-y^2=4\) thì khá dễ đến việc hyperbolic hóa biến số, qua đó dễ dàng tìm được min của P là \(2\sqrt{5}-6\) . Nhưng sử dụng toán sơ cấp thì đúng là chưa nghĩ ra.

Cách hyperbolic hóa:

\(P=3x^2\left(x^2-4\right)+xy^3+xy\left(y^2+4\right)=3\left(xy\right)^2+xy^3+x^3y=3\left(xy\right)^2+xy\left(x^2+y^2\right)\)

Nếu x;y cùng dấu thì P>0, xét trong trường hợp x;y trái dấu. Không mất tính tổng quát, giả sử \(x>0\) 

Từ giả thiết: \(x^2-y^2=4\Rightarrow\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{2}\right)^2=1\) \(\Rightarrow\dfrac{x}{2}\ge1\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{2}=cosh\left(u\right)\\\dfrac{y}{2}=sinh\left(u\right)\end{matrix}\right.\)

\(P=3\left(4sinh\left(u\right).cosh\left(u\right)\right)^2+4sinh\left(u\right).cosh\left(u\right)\left[4sinh^2u+4cosh^2u\right]\)

\(=12sinh^2\left(2u\right)+8sinh\left(2u\right).cosh\left(2u\right)\)

\(=6\left[cosh\left(4u\right)-1\right]+4sinh\left(4u\right)\)

\(=6cosh\left(4u\right)+4sinh\left(4u\right)-6\)

\(=2\sqrt{5}\left(\dfrac{3}{\sqrt{5}}cosh\left(4u\right)+\dfrac{2}{\sqrt{5}}sinh\left(4u\right)\right)-6\)

\(=2\sqrt{5}cosh\left(4u+\alpha\right)-6\ge2\sqrt{5}-6\)

(Trong đó  \(\dfrac{3}{\sqrt{5}}=cosh\left(\alpha\right)\) ; \(\dfrac{2}{\sqrt{5}}=sinh\left(\alpha\right)\))

Nhìn điểm rơi \(4u+\alpha=0\) với \(\alpha=arccosh\left(\dfrac{3}{\sqrt{5}}\right)=ln\left(\sqrt{5}\right)\) xuất hiện logarit tự nhiên thì mình không nghĩ bằng 1 pp sơ cấp nào đó có thể giải quyết được bài này.