Giaỉ pt sau : y^2 + 4^x + 2y - 2^x+1 + 2 = 0.
Giaỉ pt sau : x(x+2)(x^2+2x+2) + 1 = 0.
PT <=> \(x^4+4x^3+6x^2+4x+1=0\)
Bạn giải rõ ràng ra đc ko ?
x(x+2)(x2+2x+2)+1=0
<=>(x2+2x)(x2+2x+2)+1=0
Đặt x2+2x=a
PT <=>a(a+2)+1=0
<=>a2+2a+1=0
<=> (a+1)2=0
<=>a= -1
=>x2+2x= -1
<=>x2+2x+1=0
<=>( x+1)2=0
<=>x= -1
1. Giaỉ pt
x^2 - 3x^2 - 4=0
2. Cho pt: x^2 - 6x + 2m - 3 = 0(1) với m là tham số
a) Giaỉ pt khi m=-2
b) Tìm các giá trị của m để pt (1) có 2 nghiệm x1 , x2 thỏa mãn x21.x22 + x21.x22 = 24
\(1) x^2-3x-4=0 \\\Leftrightarrow -2x^2-4=0 \\\Leftrightarrow -2(x^2+2)=0 \\\Leftrightarrow x^2+2=0 \)
\(\Leftrightarrow x^2=-2 \) (vô lý)
Vậy \(S=\left\{\varnothing\right\}\)
Bài 2:
a) Khi m = - 2, phương trình (1) trở thành:\(x^2-6x-7=0\)
\(\Delta=b^2-4ac=\left(-6^2\right)-4.\left(-7\right)=64\)
\(\sqrt{\Delta}=\sqrt{64}=8>0\)
Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{6+8}{2}=7\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{6-8}{2}=-1\)
Vậy \(S=\left\{7;-1\right\}\)
1.Giaỉ pt sau với a là hằng số :
a(ax+1)=x(a+2)+2
2.Giaỉ pt sau
b/ x3 + 2x -4=0
c/ x3 + 8x2 +17x + 10=0
d/ x3 + 3x2 + 6x + 4=0
e/ x3 - 11x2 + 30x = 0
(các bn giúp mk với, mk cần gấp)
bài 2:
c) \(x^3+8x^2+17x+10=0\)
\(\Leftrightarrow\)\(x^3+x^2+7x^2+7x+10x+10=0\)
\(\Leftrightarrow\)\(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2+7x+10\right)=0\)
đến đây thì dễ rồi, bn cm x^2 + 7x + 10 > 0
Giaỉ PT
x(x+2)(x^2+2x+2)+1=0
\(x\left(x+2\right)\left(x^2+2x+2\right)+1=0\Leftrightarrow\left(x+1-1\right)\left(x+1+1\right)\left(x^2+2x+1+1\right)+1=0\) \(Đạt:x+1=a\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+1=0\Leftrightarrow\left(a^2-1\right)\left(a^2+1\right)+1=0\Leftrightarrow a^4-1+1=0\Leftrightarrow a^4=0\Leftrightarrow a=0\Leftrightarrow x=-1.Vậy:x=-1\)
1) Giaỉ hệ phương trình \(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
2) Giaỉ hệ phương trình \(\left\{{}\begin{matrix}x^2-6y^2-xy-2x+11y=3\\x^2+y^2=5\end{matrix}\right.\)
3) Chứng minh biểu thức sau không là số tự nhiên S= \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}\)1/ \(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4x-4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
Thay vào 1 trong 2 pt ban đầu là xong
2/ \(x^2-\left(y+2\right)x-6y^2+11y-3=0\)
\(\Delta=\left(y+2\right)^2-4\left(-6y^2+11y-3\right)\)
\(=25y^2-40y+16=\left(5y-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+2+5y-4}{2}\\x=\frac{y+2-5y+4}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3y-1\\x=-2y+3\end{matrix}\right.\)
Thay vào pt 2 là được
c/ \(S=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(S< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
\(S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(S< 1+2\left(\sqrt{100}-1\right)=19\)
\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)
\(S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải số tự nhiên
cho (x^2-y^2+1)^2+4^2y^2-x^2-y^2=0.Tìm gttnn,gtln cua pt x^2+y^2
Nước ta có nhiều tấm gương vượt lên số phận, học tập thành công (như anh Nguyễn ngọc kí, ...)Lấy nhan đề là ...
Tả một người thân (ông, bà, cha, mẹ, anh, chị, em... của em) - Loigiaihay
Nè nè có liên quan gì đến toán không vậy?
Giaỉ hệ pt:
\(\left\{{}\begin{matrix}x+y-2=4\sqrt{z-2}\\y+z-2=4\sqrt{x-2}\\x+z-2=4\sqrt{y-2}\end{matrix}\right.\)
Cảm ơn mn ạ
đkxđ: \(x,y,z\ge2\)
Biến đổi pt đầu tiên, ta được:
\(x+y-2=4\sqrt{z-2}\)
\(\Leftrightarrow\left(x-2\right)+\left(y-2\right)=4\sqrt{z-2}-2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\\\sqrt{y-2}=b\\\sqrt{z-2}=c\end{matrix}\right.\) với \(a,b,c\ge0\) thì ta thu được:
\(a^2+b^2=4c-2\)
Lập 2 đẳng thức tương tự rồi cộng theo vế, ta được:
\(2\left(a^2+b^2+c^2\right)=4\left(a+b+c\right)-6\)
\(\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\) (*)
Mà lại có \(a^2+1\ge2a\) \(\Rightarrow\) \(a^2+b^2+c^2+3\ge2a+2b+2c\)
Nên để (*) xảy ra thì \(a=b=c=1\) \(\Leftrightarrow x=y=z=3\)
Vậy hpt đã cho có nghiệm \(\left(x,y,z\right)=\left(3,3,3\right)\)
\(\begin{cases}y^6+3\left(x^2+y^2\right)=x^3+6x-4\left(1\right)\\xy^2-2xy+y^2+y=2\left(2\right)\end{cases}\) sau khi lm pp hàm số ra \(x=1+y^2\) thế vào 2 đc pt \(y^4-2y^3+2y^2-y-2=0\) mn giải hộ e pt này vs ạ mt ra số xấu lắm
để mk làm nốt cho
\(y^4-2y^3+2y^2-y-2=0\)
<=> \(\left(y^4-2y^3+y^2\right)+\left(y^2-y\right)-2=0\)
<=> \(\left(y^2-y\right)^2+\left(y^2-y\right)-2=0\)
đặt y^2-y=t thì ta có pt \(t^2+t-2=0\)
<= >\(\int_{t=-2}^{t=1}\)
với t=1==> \(y^2-y=1\) từ đó tính ra nghiệm x=\(\frac{1+\sqrt{5}}{2}\) và \(x=\frac{1-\sqrt{5}}{2}\)
với t=-2 thì pt vô nghiệm
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️