\(\frac{1}{x_1^2}+\frac{1}{x_2^2}=\frac{10}{9}\)
Tìm \(x_1\)biết \(\frac{x_1-1}{9}=\frac{x_2-2}{8}=\frac{x_3-3}{7}=...=\frac{x_9-9}{1}\)và \(x_1+x_2+x_3+...+x_9=90\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=\frac{x_3-3}{7}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+7+...+1}\)\(=\frac{\left(x_1+x_2+...+x_9\right)-45}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)
Từ \(\frac{x_1-1}{9}=1\Rightarrow x_1=1\cdot9+1=10\)
Vậy \(x_1=10\)
\(\frac{x_1-9}{1}=\frac{x_2-8}{2}=.....=\frac{x_8-2}{8}=\frac{x_9-1}{9}\)và \(x_1+x_2+......+x_8+x_9=135\)
tìm \(x_1,x_2,x_3.......,x_9\)
\(\frac{x_{1-1}}{9}=\frac{x_{2-2}}{8}=\frac{x_3-3}{7}=....=\frac{x_{9-9}}{1}\) và \(x_1+x_2+x_3+...+x_9=90\)
Cho pt : 2x2 - 3x +1 =0 . Gọi x1, x2 là nghiệm của pt . không giải pt hãy tính
a, \(\frac{1}{x_1}+\frac{1}{x_2}\)
b, \(\frac{1-x_1}{x_1}+\frac{1-x_2}{x_2}\)
c,\(\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}\)
Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{b}{a}\) = \(\frac{3}{2}\) Và x1.x2 = \(\frac{c}{a}=\frac{1}{2}\)
a) \(\) \(\frac{1}{\text{x1}}+\frac{1}{x2}=\frac{x1+x2}{x1.x2}=\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{3}{1}=3\)
b)\(\frac{1-x1}{x1}+\frac{1-x2}{x2}=\frac{\left(1-x1\right)x2+\left(1-x2\right)x1}{x1.x2}=\frac{x2-x1.x2+x1-x1.x2}{x1.x2}=\frac{\left(x1+x2\right)-2x1.x2}{x1.x2}=\frac{\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\)
c) \(\frac{x1}{x2+1}+\frac{x2}{x1+1}=\frac{x1^2+x1+x2^2+x2}{x1.x2+x1+x2+1}=\frac{\left(x1^2+2x1.x2+x2^2\right)+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\left(x1+x2\right)^2+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\frac{3^2}{2^2}+\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}+\frac{3}{2}+1}=\frac{11}{12}\)
Cho \(x_i\in\left[1;\sqrt{2}\right]\)
Chứng minh: \(\frac{\sqrt{x_1^2}-1}{x_2}+\frac{\sqrt{x_2^2}-1}{x_3}+...+\frac{\sqrt{x_n^2}-1}{x_1}\le\frac{n\sqrt{2}}{2}\)
Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).
Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).
Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).
Giải:
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).
Chứng minh tương tự...
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).
Mặt khác với mọi \(i\in\overline{1,n}\) ta có:
\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
nếu nó mà dễ thế thì mình đã ko hỏi rồi,linh à
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath
cho \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m-2\end{cases}}\)
tìm M để \(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)
\(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)
\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1+x\right)\left(x_2+1\right)}=4\)
\(\frac{\left(x_1.x_2\right)^2-2x_1^2-2x_2^2+4}{x_1.x_2+x_1+x_2+1}=4\)
\(\frac{\left(x_1.x_2\right)^2-2\left(x^2_1+x_2^2\right)+4}{x_1.x_2+\left(x_1+x_2\right)+1}=4\)
\(\frac{\left(m-2\right)^2-2.\left[\left(x_1+x_2\right)-2x_1x_2\right]+4}{m-2+\left(-m\right)+1}=4\)
\(\frac{m^2-4m+4-2.\left[m^2-2\left(m-2\right)\right]+4}{-1}=4\)
\(\Leftrightarrow m^2-4m+4-2\left(m^2-2m+4\right)+4=-4\)
\(\Leftrightarrow m^2-4m+4-2m^2+4m-8+4+4=0\)
\(\Leftrightarrow-m^2+4=0\)
\(\Leftrightarrow m^2-4=0\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow m=\pm2\)
vậy \(m=\pm2\) là các giá trị cần tìm
Cho phương trình : \(x^2-7x+3=0\) có 2 nghiệm x1, x2:
Lập phương trình bậc 2 có 2 nghiệm là :
\(\frac{1}{x_1}+\frac{1}{x_2};\frac{x_1}{x_2}+\frac{x_2}{x_1}\)