Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2018 lúc 6:26

Chọn A.

Tập xác định D = R \ {1}. Ta có 

Vì tiếp tuyến vuông góc với Δ nên, 

Gọi N(xo; yo) là tọa độ tiếp điểm của tiếp tuyến, ta có f’(x) = ktt 

(xo – 1)2 = 4 xo = 3 xo = -1.

Với xo = 3 y = -5, phương trình tiếp tuyến tại điểm này là:

y = -1(x – 3) – 5 y = -x – 2

Với xo = -1 y = -1, phương trình tiếp tuyến tại điểm này là:

y = -1(x + 1) – 1 y = -x – 2.

Nguyễn Linh Chi
Xem chi tiết
Hồng Phúc
4 tháng 4 2021 lúc 0:36

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

Hồng Phúc
4 tháng 4 2021 lúc 0:46

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

nanako
Xem chi tiết
Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:27

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:35

2.

(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)

(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)

Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)

\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)

\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)

? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:48

Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.

\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)

Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2017 lúc 8:18

Chọn C.

Vũ Hiền Vi
Xem chi tiết
Trần Khánh Vân
29 tháng 4 2016 lúc 11:42

Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)

\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)

a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :

\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)

\(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)

\(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)

b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)

Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :

\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)

                   \(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)

* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào

* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)

             + Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến

             + Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào

 
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2017 lúc 4:25

Chọn C.

Đạo hàm: y’ = 3x2 + 6x – 8.

Tiếp tuyến cần tìm song song với đường thẳng Δ: y = x + 2017 nên hệ số góc của tiếp tuyến là 1.

Ta có phương trình 

Tại M(1; -3). Phương trình tiếp tuyến là y = x – 4.

Tại N(-3; 25). Phương trình tiếp tuyến là y = x + 28.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 4:20

Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀ x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

Hoàng Ánh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 5 2021 lúc 15:24

Ủa trước 2 số 4 kia là dấu gì vậy bạn?

Nguyễn Việt Lâm
22 tháng 5 2021 lúc 15:36

\(y'=3x^2-3\)

Phương trình d: \(y-\dfrac{1}{3}x-4=0\Leftrightarrow y=\dfrac{1}{3}x+4\)

Gọi k là hệ số góc của tiếp tuyến, do tiếp tuyến vuông góc d nên:

\(k.\left(\dfrac{1}{3}\right)=-1\Rightarrow k=-3\)

Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow y'\left(x_0\right)=k\)

\(\Rightarrow3x^2_0-3=-3\)

\(\Rightarrow x_0=0\)

\(\Rightarrow y_0=x_0^3-4x_0+4=4\)

Phương trình tiếp tuyến:

\(y=-3\left(x-0\right)+4\Leftrightarrow y=-3x+4\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 17:58

\(y'=3x^2+6x-6\)

Tiếp tuyến vuông góc đường thẳng đã cho nên có hệ số góc thỏa mãn:

\(k.\left(-\dfrac{1}{18}\right)=-1\Rightarrow k=18\)

\(\Rightarrow3x^2+6x-6=18\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=9\\x=-4\Rightarrow y=9\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=18\left(x-2\right)+9\\y=18\left(x+4\right)+9\end{matrix}\right.\)