Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 10:53

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 21:44

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

ngô thị vân anh
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Tr Khanh Thu
Xem chi tiết
Minh Phương Cao Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 19:15

a: Xét tứ giác OBME có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: OBME là tứ giác nội tiếp

Tấn Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:06

a: Xét (O) có

MC,MB là các tiếp tuyến

Do đó: MC=MB

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>BC\(\perp\)AC tại C

=>BC\(\perp\)AN tại C

=>ΔBNC vuông tại C

Ta có: \(\widehat{NCM}+\widehat{MCB}=\widehat{NCB}=90^0\)

\(\widehat{CNM}+\widehat{CBM}=90^0\)(ΔNCB vuông tại C)

mà \(\widehat{MCB}=\widehat{MBC}\)

nên \(\widehat{NCM}=\widehat{CNM}\)

=>ΔMNC cân tại M

=>MN=MC

mà MC=MB

nên MN=MB

=>M là trung điểm của BN

c: ta có: CH\(\perp\)AB

NB\(\perp\)BA

Do đó: CH//NB

Xét ΔANM có CI//NM

nên \(\dfrac{CI}{NM}=\dfrac{AI}{AM}\left(3\right)\)

Xét ΔAMB có IH//MB

nên \(\dfrac{IH}{MB}=\dfrac{AI}{AM}\left(4\right)\)

Từ (3) và (4) suy ra \(\dfrac{CI}{NM}=\dfrac{IH}{MB}\)

mà NM=MB

nên CI=IH

=>I là trung điểm của CH

Đan Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 11:05

a: Xét (O) có

MA,MH là tiếp tuyến

nên MA=MH

mà OA=OH

nên OM là phân giác của góc AOH(1) và HM=MA

Xét (O) có

NH,NB là tiếp tuyến

nên NH=NB và ON là phân giác của góc HOB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

AM*BN=HM*HN=OH^2=R^2

b: AM+BN=HN+HM>=2*OH=AB

Dấu = xảy ra khi MN=AB

=>H trùng với O

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 4:10

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 12:12

a: Xét (O) có

CE là tiếp tuyến

CA là tiếp tuyến

Do đó: CE=CA

Xét (O) có

DE là tiếp tuyến

DB là tiếp tuyến

Do đó: DE=DB

Ta có: DE+CE=DC

nên CD=AC+BD