cho a,b,c thuộc N thỏa mãn a2+b2 =c2 CM trong 2 số a, b có ít nhất 1 số chia hết cho 2
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
Cho a, b, c là các số thực thỏa mãn ab+bc+ca=3. CMR:
(a2+2)(b2+2)(c2+2)-18 ≥ 3(a2+b2+c2)
Cho a , b , c thuộc N thỏa mãn a2 + b2 = c2 . Chứng minh trong 2 số a , b có ít nhất một số chia hết cho
Cho ba số thực dương a,b,c thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 b - 6 c = 10 và a + c=2 . Tính giá trị biểu thức P = 3a + 2b + c khi Q = a 2 + b 2 + c 2 - 14 a - 8 b + 18 c đạt giá trị lớn nhất.
A. 10
B. -10
C. 12
D. -12
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Cho các số thực a,b,c thỏa mãn đồng thời a2+2=b4 , b2+2=c4, c2+2=a4
tĩnh giá trị biểu thức B=a2+b2+c2+a2b2c2-(a2b2+b2c2+c2a2)+2022
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho a,b,c thuộc N thỏa mãn a^2 +b^2 = c^2, chứng minh rằng
trong 2 số a,b có ít nhất 1 số chia hết cho 3
các bạn trình bày ra giúp mình nhé!!!!
Tìm ba số tự nhiên a,b,c thỏa mãn đẳng thức:a^2+b^2=c^2.
Chứng minh rằng:
a,Trong hai số a,b có ít nhất một số chia hết cho 2.
b,Trong hai số a,b có ít nhất một số chia hết cho 3.
c,Trong hai số a,b có ít nhất một số chia hết cho 4.
d,Trong hai số a,b có ít nhất một số chia hết cho 5
e,a.b.c chia hết cho 60