\(\sqrt{x-4}\) +\(\sqrt{6-x}\)=\(x^2\)-10x+27
\(\sqrt{x-2}\) +\(\sqrt{4-x}\) =\(^{x^2}\)-6x+11
Giải phương trình:
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
bài 1 :điều kiện\(4\le x\le6\)
ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)
\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)
bài 2 :điều kiện : \(2\le x\le4\)
ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)
\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
1) Giải các PT sau:
a)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b)\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)
c)\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
d)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
e)\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\)
f)\(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))
<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1
<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)
TH1: \(0\le\sqrt{x+2}< 2\)
Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)
<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))
TH2 : \(2\le\sqrt{x+2}\le3\)
Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
<=> \(1=1\) (luôn đúng)
Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)
TH3 \(\sqrt{x+2}>3\)
Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)
<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))
Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)
b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))
Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)
Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)
<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)
Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
<=> \(x^2-10x+27\ge2\) (2)
Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)
c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))
<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)
Bài tập:Giải các phương trình sau
1)\(\sqrt{-4^2+25}=x\)
2)\(\sqrt{x^2-10x+25}\)=2x+1
3)\(\sqrt{x^2-6x+9}+x=11\)
4)\(\sqrt{x^2-4x+3}=x-2\)
Giải phương trình
`sqrt(x-3) + sqrt(5-x) = 2`
`sqrt(x-4)+sqrt(6-x) = x^2 -10x+27`
a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)
=>3<=x<=5
\(\sqrt{x-3}+\sqrt{5-x}=2\)
=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)
=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)
=>x-4=0
=>x=4
\(a,\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(b,\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giải phương trình
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
b)√x−2+√4−x=x2−6x+11
\(\Leftrightarrow\sqrt{x}-x=x^2-6x+11\)
\(\Leftrightarrow\sqrt{x}-x\)
\(\Leftrightarrow x^2-6x+11\)
\(\Leftrightarrow-x^2+5x+\sqrt{x}=11\)
\(\Leftrightarrow\sqrt{x}-x=\left(x-6\right)x+11\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)\sqrt{x}=x^2-6x+11\)
Tới đây thì đơn giản rồi nhé!
giải các phương trình
1) \(\sqrt{4x-20}\) +3\(\sqrt{\dfrac{x-5}{9}}\) \(-\dfrac{1}{3}\sqrt{9x-45}=6\)
2)\(\sqrt{x+1}+\sqrt{x+6}=5\)
3) \(x^2-6x+\sqrt{x^2-6x+7}=5\)
4)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
5)\(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
6)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
7)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
3)
ĐK: \(x^2-6x+7\geq 0\)
Đặt \(\sqrt{x^2-6x+7}=a(a\geq 0)\) \(\Rightarrow x^2-6x=a^2-7\)
PT trở thành: \(a^2-7+a=5\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow (a-3)(a+4)=0\Rightarrow a=3\) (do \(a\geq 0)\)
\(\Rightarrow \sqrt{x^2-6x+7}=3\)
\(\Rightarrow x^2-6x+7=9\)
\(\Leftrightarrow x^2-6x-2=0\) \(\Rightarrow x=3\pm \sqrt{11}\) (đều thỏa mãn)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
bài 1
a, \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b, \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)