Tìm nghiệm đa thức: \(g\left(x\right)=2x^3-11x^2-23x+14\)
Cho 2 đơn thức
\(A\left(x\right)=-2x^3+11x^2-5x-\dfrac{1}{5}\)
\(B\left(x\right)=2x^3-3x^2-7x+\dfrac{1}{5}\)
a) Tính A(x) + B(x)
b) Tìm đa thức C(x) biết C(x) +B(x) = A(x)
a: \(A\left(x\right)+B\left(x\right)\)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)
\(=8x^2-12x\)
b: C(x)=A(x)-B(x)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)
\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)
Cho đa thức F(x) = 2x- 4
a, Tìm nghiệm của F(x)
b, Chứng tỏ đa thức G(x) \(=F\left(x\right)+x^2-x+6\) vô nghiệm
\(a.\)
\(f\left(x\right)=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow x=2\)
\(b.\)
\(g\left(x\right)=2x-4+x^2-x+6\)
\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
PTVN
Cho đa thức :
\(F\left(x\right)2x^5+x^4+1x^2+x+1\)
\(G\left(x\right)=2x^5+x^4-x^2+1\)
Tính \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)và tìm nghiệm của đa thức
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^5+x^4+1x^2+x+1\right)-\left(2x^5+x^4-x^2+1\right)\)
\(h\left(x\right)=2x^5+x^4+x^2+x+1-2x^5-x^4+x^2-1\)
\(h\left(x\right)=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(x^2+x^2\right)+\left(1-1\right)+x\)
\(h\left(x\right)=0+0+2x^2+0+x\)
\(h\left(x\right)=2x^2+x\)
a) Cho đa thức \(f\left(x\right)=\left(x-4\right)-3\left(x+1\right)\). Tìm x sao cho \(f\left(x\right)=4\)
b) Cho đa thức \(g\left(x\right)=m^2x^{10}+\left(3m+4\right)x^5+m^2x-10\). Tìm m biết rằng đa thức g (x) nhận x = -1 làm nghiệm.
Cho đa thức \(f\left(x\right)=\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)và \(g\left(x\right)=ax^2+bx-4\)
a)Thu gọn đa thức f(x)
b)Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 ; x=4
c)CMR g(x)=(1-x)(x-4)
d)Viết đa thức h(x)=f(x)+g(x) thành tích số
e)Tìm nghiệm của đa thức h(x)
c) gọi x1,x2 là nghiệm của pt \(x^2-23x-\left(m^2+14\right)=0\) .Tìm giá trị lớn nhất của biểu thức P= \(x_1+x_2+x_1x_2\)
Pt đã cho luôn luôn có 2 nghiệm pb với mọi m
\(\left\{{}\begin{matrix}x_1+x_2=23\\x_1x_2=-m^2-14\end{matrix}\right.\)
\(\Rightarrow P=23-m^2-14=9-m^2\le9\)
\(P_{max}=9\) khi \(m=0\)
\(P_{min}\) không tồn tại
Cho đa thức f(x)= \(\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)
và g(x)= \(ax^2+bx-4\)
a, Thu gọn đa thức f(x)
b, Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 và x=4
c, Chứng minh g(x)=(1-x)(x-4)
d, Viết đa thức h(x) = f(x) + g(x) thành 1 tích
e, Tìm nghiệm của h(x) (tìm đủ các nghiệm)
cho hai đa thức \(f\left(x\right)=\left(x-1\right)\left(x-3\right)\) và\(g\left(x\right)=x^3-ax^2+bx-3\)
tìm hệ số a,b biết rằng nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x)
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.
Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:
\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)
Vậy a=5 và b=7
cho 2 đa thức
\(f\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4\)
\(g\left(x\right)=x^5-9+2x^2+7x^4+2x^3-3x^{ }\)
a,sắp xếp các đa thức theo lũy thừa giảm của biến
tính tổng \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
c,tìm nghiệm của đa thức \(h\left(x\right)\)
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3