Pt đã cho luôn luôn có 2 nghiệm pb với mọi m
\(\left\{{}\begin{matrix}x_1+x_2=23\\x_1x_2=-m^2-14\end{matrix}\right.\)
\(\Rightarrow P=23-m^2-14=9-m^2\le9\)
\(P_{max}=9\) khi \(m=0\)
\(P_{min}\) không tồn tại
Pt đã cho luôn luôn có 2 nghiệm pb với mọi m
\(\left\{{}\begin{matrix}x_1+x_2=23\\x_1x_2=-m^2-14\end{matrix}\right.\)
\(\Rightarrow P=23-m^2-14=9-m^2\le9\)
\(P_{max}=9\) khi \(m=0\)
\(P_{min}\) không tồn tại
gọi \(x_1\) , \(x_2\) là 2 nghiệm của pt \(x^3-mx+m-1=0\) . tìm m để biểu thức P = \(\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\) đật giá trị lớn nhất
Cho phương trình: x2 - mx + m -1 = 0 với m là tham số.
Gọi \(x_1\), \(x_2\) là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức:
C = \(\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\)
b) Cho phương trình \(\left(m^2+1\right)x^2+2\left(m^2+1\right)x-m=0\left(1\right)\) gọi x1,x2
là nghiệm của phương trình (1). Tìm
giá trị lớn nhất biểu thức T= \(x_1^2+x_2^2\)
6 Gọi \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-3=0\) .Không giải pt hãy tính giá trị của các biểu thức sau:
a. A=\(x_1^2+x_2^2\)
b. B=\(x_1^2x_2+x_1x_2^2\)
c. C=\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
d. D=\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}\)
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
Cho phương trình x2 - (2m + 1)x - (m2 + 2) = 0.
Tìm giá trị nhỏ nhất và lớn nhất của A = \(\dfrac{x_1+x_2}{x_1x_2}\)
(x1, x2 là các nghiệm của phương trình).
Cho phương trình : \(x^2-mx-4=0\)
Gọi x1,x2 là hai nghiệm phân biệt của phương trình. Tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\)
Cho phương trình x2-mx+m-1=0 (1).Gọi x1,x2 là các nghiệm của phương trình (1).Đặt B=\(\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\) , giá trị nhỏ nhất của B là
A.-1 B.\(\dfrac{-1}{4}\) C.\(\dfrac{1}{2}\) D.\(\dfrac{-1}{2}\)
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.