Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
0o0^^^Nhi^^^0o0
Xem chi tiết
Hồng Duyên
Xem chi tiết
nguyễn thái hồng duyên
Xem chi tiết
Mysterious Person
29 tháng 7 2018 lúc 12:02

sữa lại câu cuối cho Nhã Doanh

\(\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{22-2\sqrt{21}-\sqrt{\left(\sqrt{21}+1\right)^2}}\)

\(=\sqrt{22-2\sqrt{21}-\sqrt{21}-1}=\sqrt{21-3\sqrt{21}}\)

Nhã Doanh
29 tháng 7 2018 lúc 11:37

\(a.\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

\(b.\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

\(c.\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)\(d.\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{\left(\sqrt{21}-1\right)^2-\sqrt{\left(\sqrt{21}+1\right)^2}}=\sqrt{21}-1-\sqrt{\sqrt{21}+1}\)

the glory
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 23:12

a: \(=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

b: \(=\dfrac{\sqrt{10}\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\left(\sqrt{11}+\sqrt{7}\right)}=\sqrt{\dfrac{10}{2}}=\sqrt{5}\)

c: \(=\dfrac{\sqrt{6}\left(\sqrt{7}-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{7}-\sqrt{6}\right)}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)

HT.Phong (9A5)
4 tháng 7 2023 lúc 6:49

1) \(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{9\sqrt{5}+3\sqrt{9\cdot3}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{9\sqrt{5}+3\cdot3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{9\cdot\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{9}{1}=9\)

2) \(\dfrac{\sqrt{110}+\sqrt{70}}{\sqrt{22}+\sqrt{14}}\)

\(=\dfrac{\sqrt{10}\cdot\sqrt{11}+\sqrt{10}\cdot\sqrt{7}}{\sqrt{2}\cdot\sqrt{11}+\sqrt{2}\cdot\sqrt{7}}\)

\(=\dfrac{\sqrt{10}\cdot\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\cdot\left(\sqrt{11}+\sqrt{7}\right)}\)

\(=\dfrac{\sqrt{10}}{\sqrt{2}}=\sqrt{\dfrac{10}{2}}\)

\(=\sqrt{5}\)

3) \(\dfrac{\sqrt{42}-6}{\sqrt{21}-\sqrt{18}}\)

\(=\dfrac{\sqrt{6}\cdot\sqrt{7}-\sqrt{6}\cdot\sqrt{6}}{\sqrt{3}\cdot\sqrt{7}-\sqrt{3}\cdot\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\cdot\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{3}\cdot\left(\sqrt{7}-\sqrt{3}\right)}\)

\(=\dfrac{\sqrt{6}}{\sqrt{3}}=\sqrt{\dfrac{6}{3}}\)

\(=\sqrt{2}\)

123 nhan
Xem chi tiết
Vui lòng để tên hiển thị
21 tháng 7 2023 lúc 9:14

`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.

`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.

`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.

`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.

`= 7`.

`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`

`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`

`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`

`= 33 - 11 = 22`.

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2020 lúc 21:05

a) Sửa đề: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

Ta có: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{7+2\cdot\sqrt{7}\cdot1+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}\)

\(=\left|\sqrt{7}+1\right|-\sqrt{7}\)

\(=\sqrt{7}+1-\sqrt{7}\)

=1

b) Ta có: \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}\)

\(=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}\)

\(=2-\sqrt{3}\)

c) Ta có: \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1\)

\(=2\sqrt{13}\)

d) Ta có: \(D=\sqrt{22-2\sqrt{21}}-\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\cdot\sqrt{21}\cdot1+1}-\sqrt{21+2\cdot\sqrt{21}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}-\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|-\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1-\left(\sqrt{21}+1\right)\)

\(=\sqrt{21}-1-\sqrt{21}-1\)

=-2

Phan Triết
Xem chi tiết
48-Lê Thị Tường Vi
19 tháng 9 2021 lúc 18:34

undefinedundefined

Nguyễn Hồng Thắm
Xem chi tiết
Phùng Minh Quân
8 tháng 10 2018 lúc 17:21

Ta có : 

\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)

\(\left(2\sqrt{2016}\right)^2=8064\)

Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)

Vậy... 

Chúc bạn học tốt ~ 

Nguyễn Hồng Thắm
8 tháng 10 2018 lúc 21:15

Cảm ơn bn nhiều nhé :)))

Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 19:57

21: ĐKXĐ: x>0; x<>1

\(A=\left(\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{x}\)

\(=\dfrac{-x+\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{1}{x}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}+2}{x}\)

22:
DKXĐ: x>0; x<>1

\(A=\dfrac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1+\sqrt{x}+2-x}\)

\(=\dfrac{x}{\sqrt{x}+1}\)

23: ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)

\(=\dfrac{-4\sqrt{x}+4}{4}=-\sqrt{x}+1\)

24: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

25:

ĐKXĐ: x>=0; x<>1

\(A=1:\dfrac{x+2\sqrt{x}-2-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1-x+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

27: ĐKXĐ: x>0; x<>4

\(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-1-2\sqrt{x}+1}\)

\(=\dfrac{4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}}\)

\(=\dfrac{-4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\)