cho phương trình x1^2 - ( m+1)x +m =0 . tìm m để pt có hai nghiệm x1 x2 thỏa mãn x2 + 2x2
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Tìm m để phương trình
a) x2+2x+m=0 có hai nghiệm x1,x2 thỏa mãn x1=3x2
b) x2-(m+5)x-m+6=0 có hai nghiệm x1,x2 thỏa mãn 2x1+3x2=13
c) x2-2(m+1)x+m2-2m+29=0 có hai nghiệm x1,x2 thỏa mãn x1=2x2
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
Cho phương trình: x2 - 2(m+1)x+2m+1=0 (1)
b, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:
x21 + (x1 + x2)x2 - 2x1x2 =7
c, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn
x1 - 2x2 =3
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)
\(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)
\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)
Vậy ...
\Delta'=1^2-m=1-mΔ′=12−m=1−m
phương trình có 2 nghiệm <=>\Delta'\ge0Δ′≥0
<=>1-m\ge01−m≥0
<=>m\le1m≤1
+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1+x2=−2(1)x1x2=m(2)
Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1+2x2=1(3)
từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1+x2=−23x1+2x2=1 <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1=5x2=−7. Thay vào (2) : 5.(-7)= m <=> m= -35
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình: x2 - 2x - m2 + 1 = 0. Tìm m để pt có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - x2).(x13 - 2x12 - m2x1 + 2x2)= -3
\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)
\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)
Thế vào bài toán:
\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)
\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)
\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)
\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)
\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)
Cho phương trình x2 - 2(m + 3)x + m2 + 3 = 0 Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - 1)(2x2 - 1) = 9
Cho phương trình x 2 + 2 x + m – 1 = 0 . Tìm m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn 3 x 1 + 2 x 2 = 1
A. m = −34
B. m = 34
C. m = 35
D. m = −35
Phương trình x 2 + 2x + m – 1 = 0 có a = 1 ≠ 0 và ∆ ' = 1 2 – (m – 1) = 2 – m
Phương trình có hai nghiệm x 1 ; x 2 ⇔ ∆ ' ≥ 0 ⇔ 2 – m ≥ 0 ⇔ m ≤ 2
Áp dụng định lý Vi – ét ta có x 1 + x 2 = − 2 ( 1 ) ; x 1 . x 2 = m – 1 ( 2 )
Theo đề bài ta có: 3 x 1 + 2 x 2 = 1 ( 3 )
Từ (1) và (3) ta có:
x 1 + x 2 = − 2 3 x 1 + 2 x 2 = 1 ⇔ 2 x 1 + 2 x 2 = − 4 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = − 7
Thế vào (2) ta được: 5.(−7) = m – 1 m = −34 (thỏa mãn)
Đáp án: A
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
tìm các giá trị của tham số m để phương trình x2-2(m-1)x+m2=0 có hai nghiệm phân biệt x1,x2 thỏa mãn hệ thức (x1-x2)2+6m = x1-2x2
cho pt 2x2 - ( m + 1 )x - 6 = 0
tìm m để pt có 2 nghiệm x1 x2 thỏa mãn x12 + x2 = -2
x1^2+x2^2=(x1+x2)^2-2x1x2
=((m+1)/2)^2-2*(-6/2)
=1/4(m^2+2m+1)+6
=>x1^2=1/4m^2+1/2m+25/4-x2^2
x1^2+x2=-2
=>1/4m^2+1/2m+25/4-x2^2+x2=-2
=>-x2^2+x2+1/4m^2+1/2m+33/4=0
=>x2^2-x2-1/4m^2-1/2m-33/4=0
Δ=(-1)^2-4*1*(-1/4m^2-1/2m-33/4)
=1+m^2+2m+33
=(m+1)^2+33>=33
=>Phương trình luôn có m thỏa mãn