cho đa thức f(x)=ax2 + bc + c với a,b,c là các số hữu tỉ ko âm. biết a+3c=2019 và a+2b=2020, cm f(1) \(\le\)2019\(\frac{1}{2}\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ không âm. Biết a+3c=2019 và a+2b=2020. Chứng minh rằng \(f\left(1\right)\le2019\frac{1}{2}\)
Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039
=> 2 ( a + b + c ) = 4039 - c (1)
a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)0
=> 2 ( a + b + c ) = 4039 - c \(\le\)4039
=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)
mà f(1) = a + b + c
=> f (1) \(\le2019\frac{1}{2}\)
Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với a, b, c là các số hữu tỉ không âm, biết rằng a + 3c = 2019 và a + 2b = 2020. Chứng minh \(f\left(1\right)\le2019\frac{1}{2}\)
giúp mình với, ai nhanh vào đúng tick cho
f(x)=ax^2 +bx+c với a,b,c là số hữu tỉ ko âm. biết a+3c=2019 và a+2b=2020. chứng minh rằng f(1)bé hơn hoặc bằng 2019 +1/2(hợp số)
mn giúp mình vs ak
Ta có: \(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)(1)
Ta có: a+3c=2019
\(\Leftrightarrow3c=2019-a\)
hay \(c=\frac{2019-a}{3}\)(2)
Ta có: a+2b=2020
\(\Leftrightarrow2b=2020-a\)
\(\Leftrightarrow b=\frac{2020-a}{2}\)(3)
Thay (2) và (3) vào (1), ta được:
\(F\left(1\right)=a+\frac{2020-a}{2}+\frac{2019-a}{3}\)
\(\Leftrightarrow F\left(1\right)=\frac{6a+3\left(2020-a\right)+2\left(2019-a\right)}{6}\)
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
f(x) = ax\(^2\)+bx + 2019
=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)
<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)
<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)
Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:
(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)
=> \(f\left(1-\sqrt{2}\right)=2020\)
Cho đa thức f(x) = ax2 + bx + c
Biết f(0) = 2018, f(1) = 2019, f(-1) = 2020, Tính f(2)
Cho đa thức f(x) = ax2 + bx + c
Biết f(0) = 2018, f(1) = 2019, f(-1) = 2020, Tính f(2)
Ta có :
f(0) = a.0^2 + b.0 + c = 2018 => c = 2018
f(1) = a + b + c = 2019 => a + b = 1
f(-1) = a - b + c = 2020 => a - b = 2
Suy ra : a = 1,5 ; b = = - 0,5
Vậy : f(x) = 1,5x^2 - 0,5x + 2018
Suy ra: f(2) = 1,5.2^2 - 0,5.2 + 2018 = 2023
Bài 1 : Tìm GTLN và GTNN của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Bài 2 : Cho 2 số chính phương liên tiếp. Cmr : Tổng của 2 số đó + với tích của chúng = 1 số chính phương lẻ
Bài 3 : Cho đa thức \(F\left(x\right)=x^3+\text{ax}^2+bx+c\) (Với a, b, c ∈ R ). Biết đa thức F( x ) chia cho đa thức x + 1 dư - 4, đa thức F( x ) chia cho đa thức x - 2 dư 5
Hãy tính giá trị của \(A=\left(a^{2019}+b^{2019}\right)\left(b^{2020}-c^{2020}\right)\left(c^{2021}+a^{2021}\right)\)
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên