Tìm tất cả các nghiệm của đa thức: x4 - 16
Tìm tất cả các số thực a sao cho đa thức x4 + x3 -2x2 + x + a chia hết cho đa thức x + 1
\(x^4+x^3-2x^2+x+a⋮x+1\)
=>\(x^4+x^3-2x^2-2x+3x+3+a-3⋮x+1\)
=>a-3=0
=>a=3
Tìm tất cả các đa thức thỏa: x4 + 2x3 +3x2 + 2x + 1 = P2(x)
Help me!!!
Đặt d : deg P(x) , ta có:
\(4=d^2\Leftrightarrow d=2\)
\(\Rightarrow P\left(x\right)=ax^2+bx+c\left(a\ne0\right)\)
Trog đó , hệ số cao nhất của vế trái là 1 nên a=1 . thay vào và thu gọn 2 vế đc:
\(x^4+2x^3+6x^2-8x+8=x^4+bx^3+\left(4+c\right).x^2+4bx+4c\)
Tiến hành đồng nhất, ta được:
\(\left\{{}\begin{matrix}b=-2\\c=2\end{matrix}\right.\)
suy ra: \(P\left(x\right)=x^2-2x+2\)
Đặt d : deg P(x) , ta có:
4=d2⇔d=24=d2⇔d=2
⇒P(x)=ax2+bx+c(a≠0)⇒P(x)=ax2+bx+c(a≠0)
Trong đó , hệ số cao nhất của vế trái là 1 nên a=1 . thay vào và thu gọn 2 vế đc:
x^4+2x^3+6x^2−8x+8=x^4+bx^3(4+c).x^2+4bx+4c
Tiến hành đồng nhất, ta được:
suy ra: P(x)=x^2−2x+2
mình chỉ bít zậy ko biết có đúng không nữa
Bài 3: cho đa thức P(x)= 5x3 - x4 + 2x - x2 + x4 + 2x2 - 5x3 - 3
a, thu gọn tìm bậc của đa thức
b, Chứng tỏ X=-3 ; x=1 là các nghiệm của đa thức P(x)
c, Tìm nghiệm của đa thức Q(x) biết Q(x) + P(x) = x2 - x
Cần gấp
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
Đa thức F(x) có nhiều nhất 3 nghiệm
f(x) = \(x\left(2x^2-8x+9\right)=0\)
TH1: x= 0
TH2: \(2x^2-8x+9=0\)
\(\Delta=\left(-8\right)^2-4.1.9=28>0\)
Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)
Vậy F(x) có 3 nghiệm lần lượt là
x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Help me !!!
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
Ta có no của đa thức f(x) =0
\(\Leftrightarrow2x^3-8x^2+9x=0\)
\(\Leftrightarrow2x.\left(x^2-4x+4,5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-4x+4,5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-2\right)^2+x.5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\loai\end{cases}}}}\)
Vậy đa thức f(x) chỉ có 1 nghiệm khi và chỉ khi x= 0
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Giups mik vs !
Đa thức f(x) có nhiều nhất 1 nghiệm . Nghiệm của đa thức f(x) là 0 vì : 2 . 0^3 - 8. 0^2 + 9.0
= 2 . 0 - 8. 0 +0
=0
k nha
tìm tất cả các nghiệm của các đa thức sau a)f(x)=4-3x b)g(x)=-3x^2 +27
\(a.\)
\(f\left(x\right)=4-3x=0\)
\(\Leftrightarrow x=\dfrac{4}{3}\)
\(b.\)
\(g\left(x\right)=-3x^2+27=0\)
\(\Leftrightarrow-3x^2=-27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
Tìm tất cả các nghiệm của đa thức H(x)=P(x)+Q(x)
các ban giúp mình với, mình cần gấp