Cho tam giác ABC, gọi AD, BE, CF là các đường phân giác của nó. Chứng minh rằng ≤ SABC.
Cho tam giác ABC có AD, BE, CF là các đường phân giác trong. Gọi giao điểm của DE và CF là M; giao điểm DF và BE là N. Chứng minh rằng AD là tia phân giác của góc MAN
Cho tam giác nhọn ABC, đường cao BE, CF. Gọi SAEF, SABC lần lượt là diện tích của tam giác AEF và tam giác ABC. Chứng minh SAEF/SABC =1-sin2A
Xét tam giác AEF và tam giác ABC có:
A chung
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)
\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)
Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) Sabc = 1/2.AB.BC.sinB và AE.BF.CD = AB.BC.CA.cosA.cosB.cosC
b) tanB.tanC = AD/HD
c) H là giao điểm ba đường phân giác trong của tam giác DEF
d) HB.HC/AB.AC + HC.HA/BC.BA + HA.HB/CA.CB = 1
Mn ghi đầy đủ GT, KL với vẽ hình hộ mình nha
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) Sabc = 1/2.AB.BC.sinB và AE.BF.CD = AB.BC.CA.cosA.cosB.cosC
b) tanB.tanC = AD/HD
c) H là giao điểm ba đường phân giác trong của tam giác DEF
d) HB.HC/AB.AC + HC.HA/BC.BA + HA.HB/CA.CB = 1
Cho tam giác ABC cân tại A, đường phân giác CF. Trên cạnh AC lấy điểm E sao cho
AE = AF. Gọi D là trung điểm của BC.
a) Chứng minh AD là đường phân giác của ∆ABC
b) Chứng minh ∆ABE = ∆ACF
c) Chứng minh ba đường thẳng AD, BE, CF đồng quy
a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh: tam giác BEC đồng dạng tam giác ADC
b) Chứng minh: AH.HD = BH.HE
c) Chứng minh: tam giác CDE đồng dạng tam giác CAB
d) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DFE. Từ đó suy ra NH.AD = AN.HD
Vào TK mk nhá ! Nguồn h o c 2 4 270264
Cho tam giác ABC nhọn. Các đường cao AD,BE, CF cắt nhau tại H. Chứng minh rằng :
a) BD.DC = DH.HA
b) H là giao điểm 3 đường phân giác của tam giác DEF.
c) HD/AD + HE/BE + HF/CF = 1