Cho tam giác ABC cân tại A, đường cao AM, gọi I là trung điểm AC, K là điểm.
đối xứng của M qua L
a./ Chứng minh rằng: Tứ giác AMCK là hình chữ nhật
'b/ Tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông.
c/ So sánh diện tích tam giác ABC với điện tích tứ giác AKCM.
Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M,N lần lượt là trung điểm của HC,CE. Các đường thẳng AM,AN cắt HE tại G và K.
a)Chứng minh tứ giác AHCE là hình chữ nhật
b)Chứng minh HG=GK=KE
Mọi người giúp mình nha. Mình cảm ơn nhiều.
Câu 11. Cho tam giác ABC nhọn có trực tâm H. Các đường vuông góc với AB tại B và vuông góc với
AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H,M,D thẳng hàng
c) Gọi I là trung điểm của AD. Chứng minh IB = IC
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho ΔABC vuông tại A, biết AB = 21cm, AC = 28cm, phân giác AD (D ∈ BC)
a) Tính độ dài DB, DC
b) Gọi E là hình chiếu của D trên AC. Hãy tính độ dài DE, EC
c) Chứng minh ΔABC đồng dạng với ΔEDC . Tính tỉ số đồng dạng
d) Gọi I là giao điểm các đường phân giác và G là trọng tâm của ΔABC . Chứng minh rằng IG // AC.
Hình học lớp 8 Cho tam giác ABC có 3 góc nhọn. Vẽ hai đường cao BD và CE (D thuộc AC, E thuộc AB) a) Chứng minh: Tam giác ADB đồng dạng tam giác AEC b) Chứng minh: AD. AC = AB.AE c) Biết DE= 2cm, BC = 4cm. Tính diện tích ADE/ diện tích ABC (Mai thi rồi cíu tôi đi 💦)
1/ Cho H tùy ý nằm trong tam giác ABC. Tia AH,BH,CH cắt BC,AC,AB tại D,E,F. Chứng minh \(\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}\ge6\)
2/ Cho hình bình hành ABCD. Trên BC,CD lấy M,N tùy ý. AM,AN cắt BD tại E,F. Vẽ Ex//AD, Fy//AD, \(Ex\cap Fy=\left\{K\right\}\)
a) Chứng minh \(S_{AEF}=S_{KBD}\)
b) Chứng minh rằng nếu \(S_{AEF}=S_{EMNF}\) thì M,N,K thẳng hàng
3/ Tam giác ABC có 3 đường phân giác AD,BE,CF. Gọi \(S_{ABC}=S,S_{DEF}=S'\). Chứng minh rằng \(S\ge4S'\)
Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.
a) Chứng minh AP = PQ = QC
b) Tứ giác MPNQ là hình gì?
c) Xác định tỉ số CA / CD để MPNQ là hình chữ nhật
Giúp mình phần C với ạ
Cho tam giác ABC nhọn , các đường cao AD,BE,CF cắt nhau tại H . Từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N
a)CMR tam giác BED và BCH đồng dạng
b) chứng minh HM=HN
c)Gọi I,J,Q,K lần lượt là hình chiếu của F trên AC,AD,BE,BC
CM I,J,Q,K thẳng hàng