a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
Cho tam giác ABC vuông tại B, kẻ đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AB = AE.
a) Chứng minh D E ⊥ A C .
b) Gọi F là hình chiếu vuông góc của C trên đường thẳng AD. Chứng minh ba đường thẳng AB, ED, CF đồng quy.
Cho tam giác ABC có ba góc nhọn, AB < AC. Kẻ đường cao AD. Vẽ điểm M sao cho AB là trung trực của DM, vẽ điểm N sao cho AC là trung trực của DN.
a) Chứng minh tam giác AMN cân tại A
b) Đường thẳng MN cắt AB, AC lần lượt tại F, E. Chứng minh DA là tia phân giác của E D F ^ .
c) Chứng minh EB là tia phân giác của D E F ^ .
d) Chứng minh B E ⊥ A C .
e) Chứng minh AD, BE, CF đồng quy.
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=BA.Qua D vẽ đường vuông góc với BC cắt AC tại E, cắt BA tại F.
a) Chứng minh tam giác ABE = tam giác DBE
b)Chứng minh BE là đường trung trực của đoạn thẳng AD
c) Chứng minh tam giác BCF cân
d) Gọi H là trung điểm của đoạn thẳng CF. Chứng minh B;E;H thẳng hàng
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=BA. Qua D vẽ đường vuông góc với BC cắt AC tại E,cắt BA tại F
a.) Chứng minh tam giác ABE = tam giác DBE
b.) Chứng minh BE là đường trung trực của đoạn thẳng AD
c.) Chứng minh tam giác BCF cân
d.) Gọi H là trung điểm của CF . Chứng minh B,E,H thẳng hàng
Bài 5:
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD = BA. Qua D vẽ đường vuông góc với BC cắt AC tại E, cắt BA tại F.
a) CM: tam giác ABE = tam giác DBE
b) Chứng minh BE là đường trung trực của đoạn thẳng AD
c) Chứng minh tam giác BCF cân
d) Gọi H là trung điểm của đoạn thẳng CF. Chứng minh B;E;H thẳng hàng.
Cho tam giác ABC vuông tại A , trên cạch BC lấy điểm D sao cho BD = BA. Qua D vẽ đường vuông góc với BC cắt AC tại E, cắt BA tại F.
A. Chứng minh tam giác ABE = tam giác DBE
B. Chứng minh BE là đường trung trực của đoạn thẳng AD C.
C. Chứng minh tam giác BCF cân
D. Gọi H là trung điểm của đoạn thẳng CF . Chứng minh B;E;H thẳng hàng
Cho tam giác ABC có AB < AC, tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: Tam giác BDE là tam giác cân và AD là phân giác của góc BDE.
b) Gọi M là giao điểm của BE và AD. Chứng minh M là trung điểm của BE và AD vuông góc với BE.
c) Qua E vẽ đường thẳng song song với AB và cắt đường thẳng AD tại F. Chứng minh: M là trung điểm của AF.
d) Chứng minh: BF song song với AE.
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE =BA. Tia phân giác của góc B cắt AC ở D.
a) Chứng minh : ABD = EBD
b) Đường thẳng ED cắt đường thẳng BA tại F. Chứng minh: AF=EC
c) Chứng minh AE//CF