Rút gọn (\sqrt(x)-1)/(\sqrt(x)+1)-(\sqrt(x)+3)/(\sqrt(x)-2)-(x+5)/(x-\sqrt(x)-2)
rút gọn
\((1-\dfrac{\sqrt{x}}{\sqrt{x}+1})\div(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
ĐK : \(x\ge0;x\ne4;9\)
\(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có: \(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Rút gọn
(\(\dfrac{\sqrt{x}}{3+\sqrt{x}}\)+\(\dfrac{2x}{9-x}\)):(\(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\))
(\(\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}+\dfrac{x+9}{25-x}\)):\(\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
(\(\dfrac{1}{x-4}-\dfrac{1}{x-4\sqrt{x}+4}\)):\(\dfrac{\sqrt{x}}{2\sqrt{x}-x}\)
a) Đk: \(x>0;x\ne9;x\ne25\)
Đặt \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right]\)\(:\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}+x}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{-\sqrt{x}+5}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(3+\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-5}\)
\(=\dfrac{x}{\sqrt{x}-5}\)
b) Đk: \(x\ge0;x\ne1;x\ne25\)
Biểu thức
\(=\left[\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{x+9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]:\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)+\sqrt{x}\left(\sqrt{x}+5\right)-x-9}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}+5}{1-\sqrt{x}}\)
\(=\dfrac{x-7\sqrt{x}+10+x+5\sqrt{x}-x-9}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}\)\(=\dfrac{\left(1-\sqrt{x}\right)^2}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}=\dfrac{1-\sqrt{x}}{\sqrt{x}-5}\)
Đk: \(x>0;x\ne4\)
Biểu thức:
\(=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}-2\right)^2}\right].\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}}\)
\(=\left[\dfrac{-1}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(2-\sqrt{x}\right)^2}\right].\left(2-\sqrt{x}\right)\)
\(=-\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{-\left(2-\sqrt{x}\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}=\dfrac{-4}{4-x}\)\(=\dfrac{4}{x-4}\)
Khoảng cách hai ta là 100 bước, em bước 100, anh lùi 1
Bài: Rút gọn biểu thức sau
1)(1-\(\dfrac{\sqrt{x}}{1-\sqrt{x}}\)):(\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)+\(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))
2)(\(\dfrac{1}{\sqrt{x}+1}\)-\(\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\)):(\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{2}{x-1}\))
1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)
2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Rút gọn biểu thức
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\)- \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)+\(\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) (ĐK: \(x\ne4;x\ne9;x\ge0\))
\(A=\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{2\sqrt{x}-9-\left(x-3\sqrt{x}+\sqrt{x}-3\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
A=(\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}-1}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))(\(3\sqrt{x}-\dfrac{\sqrt{x}+4}{\sqrt{x}-1}\))
a,rút gọn A b,tìm x để A<2
a: \(A=\dfrac{2x-6\sqrt{x}+\sqrt{x}-3-2x+4\sqrt{x}+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{3x-3\sqrt{x}-\sqrt{x}-4}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1}{3x-4\sqrt{x}-4}\)
\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{3x-6\sqrt{x}+2\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+2}{\sqrt{x}-1}\)
b: Để A<2 thì \(\dfrac{3\sqrt{x}+2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)}< 0\)
=>x<1
Rút gọn A
A = \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(ĐKXĐ:x\ne4;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}-9}{x-3\sqrt{x}-2\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x-2}\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Vậy với ĐKXĐ \(x\ne4;x\ne9\) thì biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)=\(\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)=\(\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\).
rút gọn dễ hiểu
\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)
Đặt A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
ĐKXĐ: \(x\ne4;x\ne9;x\ge0\)
A \(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
tính
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
rút gọn biểu thức
A=\(\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
a, \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\left|2-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot3+3^2}\)
\(=\sqrt{5}-2+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(=\sqrt{5}-2+\left|\sqrt{5}-3\right|\)
\(=\sqrt{5}-2+3-\sqrt{5}\)
\(=1\)
b, (ĐKXĐ: x ≥ 0; x ≠ 1)
\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5}{x-\sqrt{x}+3\sqrt{x}-3}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-5}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{3\sqrt{x}+5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
#\(Toru\)
a: \(=\sqrt{5}-2+3-\sqrt{5}=3-2=1\)
b:
ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\dfrac{x-5+\sqrt{x}-1+2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+\sqrt{x}-6+2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Rút gọn biểu thức:
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{3}-x}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Ta có: \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)