Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran bao trung
Xem chi tiết
Toàn Mai
14 tháng 9 2020 lúc 21:51

Đề sai r bạn phải là \(2020\sqrt{2019}\)

Khách vãng lai đã xóa
Nhung
Xem chi tiết
Thanh Tùng DZ
9 tháng 6 2017 lúc 15:36

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

Mai tuyết vy
20 tháng 6 2019 lúc 10:39

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

Thâm Huyễn Y
Xem chi tiết
Quản gia Whisper
22 tháng 3 2016 lúc 11:31

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+........+\frac{1}{100^2}\)<\(\frac{1}{0.2}+\frac{1}{2.4}+\frac{1}{4.6}+.......+\frac{1}{98.100}\)

\(S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{49}{100}<\frac{1}{2}\)

Vậy \(\frac{49}{100}<\frac{1}{2}\)

Nguyễn Minh Ngọc
22 tháng 3 2016 lúc 11:33

Ta có 1/22<1/2*3

         1/42<1/3*4

         . . .

         1/1002<1/99*100

=> S<1/2*3+1/3*4+...+1/99*100

=> S<1/2-1/3+1/3-1/4+...+1/99-1/100

=>S<1/2-1/100

=>S<49/100

Mà 49/100<1/2

=>S<1/2

Lê Tiến Đạt
22 tháng 3 2016 lúc 11:50

               S = 1/2^2 + 1/4^2 + 1/6^2 + ... + 1/100^2 

suy ra:   4*S =    1   + 1/2^2 + 1/3^2 + ... + 1/50^2

có: 1/2^2 = 1/2*2 < 1/1*2

     1/3^2 = 1/3*3 < 1/2*3 

      1/50^2 = 1/50*50 <1/49*50

1+ 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/1*2 + 1/2*3 + ... +1/49*50

                 4*S< 1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

                  4*S < 2 - 1/50 = 99/50

                S < 99/50 : 4 = 99/50 * 1/4 = 99/200 < 100/200 = 1/2

                                            vậy S < 1/2 (đpcm)

👁💧👄💧👁
Xem chi tiết
Hoàng Thiện Nhân
Xem chi tiết
 Phạm Trà Giang
26 tháng 4 2019 lúc 20:54

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)

b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)

\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)

DoThah Trong
26 tháng 4 2019 lúc 21:00

a)A=1+1/22+1/32+....+1/1002

      <1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2

b)B=1/22+1/32+...+1/20122

     <1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012

     1/2-1/2013=2011/4026<2011/2012<1

Thanh Tâm
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Five centimeters per sec...
Xem chi tiết
Thùy Trang Nguyễn
9 tháng 5 2017 lúc 7:46

Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)

=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=             \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=  \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)

le bao truc
9 tháng 5 2017 lúc 8:29

\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)

tuandung2912
2 tháng 4 2023 lúc 21:34

cunasai

Nguyễn Phương Anh
Xem chi tiết
Mai Ngọc
28 tháng 1 2016 lúc 18:55

2. 

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\)

Lê Nho Khoa
28 tháng 1 2016 lúc 18:46

ai kết bạn không

HOANGTRUNGKIEN
28 tháng 1 2016 lúc 18:47

kho