GPT \(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)
Gpt
\(\sqrt{3x+3}-\sqrt{5-2x}-x^3+3x^2+10x-16=0\)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
GPT: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2=6\)
Mà \(\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{16}=4\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2\ge6\) với mọi x thuộc R.
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
GPT : \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
GPT:
a,\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)
b,\(x^2+9x+20=2\sqrt{3x+10}\)
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x+5\right)}+1=\sqrt{x+5}+\sqrt{x+2}\\ \)
\(a+b-ab=1\)\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\orbr{\begin{cases}a=1\Rightarrow\sqrt{x+2}=1\Rightarrow x=-1\\b=1\Rightarrow\sqrt{x+5}=1\Rightarrow x=-4\end{cases}}\)
b)
\(-\left(x+3\right)^2=\left(3x+10\right)-2\sqrt{3x+10}+1=\left(\sqrt{3x+10}-1\right)^2\)
Nghiệm duy nhất có thể x+3=0
với x=-3 có VP=0
=> x=-3 là nghiệm duy nhất
\(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\). MN giúp mình vs
gpt:
\(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
GPT \(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
phả là 10x chứ
đặt 2 căn đầu bằng a
bình phương a lên