giải phương trình:
1, x4 - 2x3 + x - \(\sqrt{x\left(x^2-x\right)}\) = 0
2, \(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)
Giải phương trình
1) \(\sqrt{x^2+10x+21}\)+6=3\(\sqrt{x+3}\)+2\(\sqrt{x+7}\)
2) \(\sqrt{x}\)+\(\sqrt{x-5}\)+\(\sqrt{x+7}\)=9
3) (x-2)(x+1)+3(x-2)\(\sqrt{\frac{x+1}{x-2}}\)=10
4) 3x+7\(\sqrt{x-4}\)=14\(\sqrt{x-4}\)-20
5)\(\left(\sqrt{x+1}+1\right)\)\(\left(\sqrt{x+1}+2x-5\right)\)=x
6)\(\sqrt{x^2-3x+2}\)+\(\sqrt{x+3}\)=\(\sqrt{x-2}\)+\(\sqrt{x^2+2x-3}\)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(\sqrt{x-4}+\sqrt{6+x}=x^2-10x+27\left(4_{ }< x< 6\right)\)
Giải phương trình:
1. \(x^2+3x+8=\left(x+5\right)\sqrt{x^2+x+2}\)
2. \(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
3. \(x^3+6x^2-2x+3-\left(5x-1\right)\sqrt{x^3+3}=0\)
4. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
5. \(4\sqrt{x+3}=1+4x+\dfrac{2}{x}\)
Giải phương trình
1, \(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
2, \(10x^2+3x+1=\sqrt{x^2+3}\left(1+6x\right)\)
3, \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
4, \(x^2+2x+15=6\sqrt{4x+5}\)
5, \(\sqrt{2x^2+5x+12}-x=5-\sqrt{2x^2+3x+2}\)
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
Giải pt : a) \(8x^2-13x+7=\left(1+\frac{1}{x}\right)\sqrt[3]{3x^2-2}\)
b) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
c) \(2\sqrt{x+1}+6\sqrt{9-x^2}+6\sqrt{\left(x+1\right)\left(9-x^2\right)}=38+10x-2x^2-x^3\)
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$
Tìm x :
f/ \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6\)
g/ \(\sqrt{9\left(x-1\right)^2}-15=0\)
i/ \(3x+\sqrt{3x-7}=7\)
k/ \(\sqrt{2x+5}=x+3\)
lm hộ giúp mk đi mn