Biết \(tan\frac{\alpha}{2}=2\). tính \(A=\frac{1+5cos\alpha}{3-2cos\alpha}\)
Cho \(tan\alpha=3\). Tính \(\frac{2sin\alpha+3cos\alpha}{4sin\alpha-5cos\alpha};\frac{3sin\alpha-2cos\alpha}{5sin\alpha+4cos^3\alpha}\).
\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)
\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)
Tính B = \(\frac{3+7cos\alpha}{3-2cos\alpha}\) , biết \(tan\frac{\alpha}{2}=2\).
biết \(sin\alpha=\frac{2}{3}\) tính giá trị biểu thức
\(A=2sin^2\alpha+5cos^2\alpha\)
\(B=tan^2\alpha-2cot^2\alpha\)
\(sina=\frac{2}{3}\Rightarrow cos^2a=1-sin^2a=\frac{5}{9}\)
\(A=2sin^2a+5cos^2a=\frac{8}{9}+\frac{25}{9}=\frac{11}{3}\)
\(B=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=\frac{4}{5}-\frac{5}{2}=-\frac{17}{10}\)
Tính E=\(\frac{8\cos^3\alpha-2\sin^3\alpha+\cos\alpha}{2cos\alpha-sin^3\alpha}\) khi tan α=2, góc α nhọn
Cho 0<a<90.Tính các biểu thức sau
a)A=\(\frac{cot\alpha+tan\alpha}{cot\alpha-tan\alpha}\)
b)B=\(\frac{sin^2+2sina.cosa-2cos^2a}{2sin^2a-3sina.cosa+4cos^2a}\)
a) cho \(\tan\alpha\) = 5 . tính \(\frac{\sin\alpha}{\sin^3\alpha+\cos^3\alpha}\) ; b) chứng minh đẳng thức : \(\frac{1+\sin\chi+\cos2\chi+\sin3\chi}{1+2\sin\chi}\) = 2cos2\(\chi\)
a/ Ta có: \(tan\alpha=5\Rightarrow cot\alpha=\frac{1}{5}\) . Đề: \(\frac{sin\alpha}{sin^3\alpha+cos^3\alpha}=\frac{\frac{1}{sin^2\alpha}}{1+\frac{cos^3\alpha}{sin^3\alpha}}=\frac{1+cot^2\alpha}{1+cot^3\alpha}=\frac{1+\left(\frac{1}{5}\right)^2}{1+\left(\frac{1}{5}\right)^3}=\frac{65}{63}\)
b/ Ta có vế trái \(=\frac{sin^2x+cos^2x+cos^2x-sin^2x+\left(sinx+sin3x\right)}{1+2sinx}=\frac{2cos^2x+2.sin2x.cosx}{1+2sinx}=\frac{2cos^2x+4.sinx.cos^2x}{1+2sinx}=\frac{2cos^2x.\left(1+2sinx\right)}{1+2sinx}=2cos^2x\) ( = vế phải)
a) Biết sinα= \(\frac{1}{2}\). Tính cosα, tanα, cotα.
b) Biết cosα= \(\frac{2}{5}\). Tính sinα, tanα, cotα.
c) Biết tanα= 3. Tính cosα, sinα, cotα.
d) Biết cotα=\(\sqrt{3}\). Tính cosα, tanα, sinα.
e) Biết sinα= \(\frac{1}{\sqrt{3}}\). Tính cosα, tanα, cotα.
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
Vẽ tam giác vuông ra, đặt 3 cạnh là a,b,c rồi tính