cho đường thẳng d:3x-4y-12=0.Phương trình các đường thẳng đi qua M(2;-1) và tạo với d một góc \(\frac{\pi}{4}\) là ?
Cho đường thẳng d : 3x- 4y -12= 0 Phương trình các đường thẳng qua M( 2 ; -1) và tạo với d một góc π 4 là:
A. 7x- y- 15= 0 ; x- 7y= 0
B. 7x+ y-15=0 và x- 7y+5= 0
C. x+ 7y-5= 0 và 7x-y+1= 0
D. x + 7y+ 5= 0 ; 7x- y- 15 = 0
Đáp án D
Gọi
và A2+ B2> 0 là véc tơ pháp tuyến của
Ta có:
Với B= 7A chọn A= 1 ; B= 7 thì d : x+ 7y+ 5= 0
Với A= -7B chọn A= 7 ; B= 1 thì d : 7x-y-15= 0
Cho đường thẳng (d): 3x−4y+5=03x-4y+5=0. Viết phương trình đường thẳng đi qua điểm M(2;1) và song song với đường thẳng d?
A. −3x−4y−2=0-3x-4y-2=0
B. Đáp án khác
C. 3x+4y−2=03x+4y-2=0
D. 3x−4y−2=0
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
Trong Oxy cho M(1;4) N(-3;-5) P(3;-4) và đường thẳng d: 3x-4y+6=0 a) Viết phương trình đường thẳng delta đi qua M và song song với d b) Viết phương trình đường thẳng delta đi qua N và vuông góc với d
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
Cho điểm M(2;5)M(2;5) và đường thẳng \Delta: 3x -4y +15 = 0Δ:3x−4y+15=0.
a) Đường thẳng d_1d1 đi qua MM và song song với \DeltaΔ có phương trình là .
b) Đường thẳng d_2d2 đi qua MM và vuông góc với \DeltaΔ có phương trình là
Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt
a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt
Phương trình d1:
\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)
b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt
Phương trình d2:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)
Trong mặt phẳng Oxy, cho điểm A( 2; -1) và đường thẳng d có phương trình 3x - 4y +5 = 0. a/ Viết phương trình tham số đường thẳng đi qua điểm A và vuông góc với đường thẳng d. b/ Viết phương trình đường tròn (C) có tâm là điểm A và cắt đường thẳng d tại 2 điểm M, N sao cho MN = 8.
Lập phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\) và song song với đường thẳng \(d:3x - 4y - 1 = 0\).
Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }} = \overrightarrow {{n_d}} = \left( {3; - 4} \right)\).
Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:
\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).
Trong mặt phẳng tọa độ Oxy cho m điểm M 1,0 và đường thẳng d :x -4y +5=0. a ,viết phương trình đường thẳng d qua m và song song với đường thẳng d x - 4y + 5 = 0 b,viết phương trình đường thẳng d qua m và vuông góc với đường thẳng d x - 4y + 5 = 0 , C,Viết phương trình đường tròn {C} M và tiếp xúc với đường thẳng d x - 4y + 5 = 0
a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+1=0
=>c=-1
=>x-4y-1=0
b: Vì (d) vuông góc x-4y+5=0
nên (d): 4x+y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+4=0
=>c=-4
=>4x+y-4=0
cho đường tròn (C) tại M (5;3)
1. viết phương trình các tiếp tuyến của (C) vuông góc với đường thẳng d: 3x+4y-7=0
2 viết phương trình các tiếp tuyến của (C) biết tiếp tuyến đi qua A(3;6)
Phương trình tham số của đường thẳng d qua điểm M( -2 ; 3) và vuông góc với đường thẳng d’ : 3x - 4y +1= 0 là:
Do 2 đường thẳng d và d’ vuông góc với nhau nên d có véc tơ chỉ phương
.
Mà d đi qua điểm M( -2; 3) nên d có phương trình tham số là:
Chọn B.
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(2;1) và M(1;3). a, Viết phương trình đường thẳng AB b, Tính khoảng cách từ điểm M đến đường thẳng △: 3x + 4y + 10 = 0 c, Viết phương trình đường thẳng d, biết d đi qua điểm A và cắt tia Ox, Oy thứ tự tại C,N sao cho tam giác OCN có diện tích nhỏ nhất? Mn giúp mình với 😥😥
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)