Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen la nguyen
Xem chi tiết
Đào Nhật Hà
20 tháng 9 2017 lúc 23:32
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
Giang Do
Xem chi tiết
Hoàng Minh Hoàng
2 tháng 8 2017 lúc 12:11

a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a

b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
katherina
24 tháng 8 2017 lúc 16:54

a. \(\dfrac{1+2sin\alpha cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{sin^2\alpha+2sin\alpha cos\alpha+cos^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{\left(sin\alpha+cos\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)

katherina
24 tháng 8 2017 lúc 16:57

b. C = \(sin^4a+sin^2a.cos^2a+cos^2a=\left(1-cos^2\right)^2+\left(1-cos^2a\right)cos^2a+cos^2a=1-2cos^2+cos^4a+cos^2a-cos^4a+cos^2a=1\)

QSDFGHJK
Xem chi tiết
Hanako-kun
12 tháng 5 2020 lúc 22:12

\(A=2\cos^4\alpha-\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+3\sin^4\alpha+3\cos^2\alpha.\sin^2\alpha\)

\(A=2\sin^4\alpha+2\cos^4\alpha+4\sin^2\alpha.\cos^2\alpha\)

\(A=2\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha\right]+4\cos^2\alpha\sin^2\alpha=2\)

Minh Nguyệt
12 tháng 5 2020 lúc 22:21

A = 2(1 - sin2α)2 - sin4α + sin2α (1-sin2α) + 3sin2α

=2 - 4sin2α + 2sin4α - sin4α + sin2α - sin4α + 3sin2α

= 2

lu nguyễn
Xem chi tiết
Huyền Tống Khánh
30 tháng 4 2019 lúc 11:14

\(y=\frac{\cos^4a+\sin^2a-\cos^2a}{\sin^4a+\cos^2a-\sin^2a}\)

\(\Leftrightarrow y=\frac{\cos^4a+\left(1-\cos^2a\right)-\cos^2a}{\left(\sin^2a\right)^2+\cos^2a-\sin^2a}\)

\(\Leftrightarrow y=\frac{\cos^4a+1-2\cos^2a}{\left(1-\cos^2a\right)^2+\cos^2a-\left(1-\cos^2a\right)}\)

\(\Leftrightarrow y=\frac{\left(1-\cos^2a\right)^2}{1-2\cos^2a+\cos^4a+2\cos^2a-1}\)

\(\Leftrightarrow y=\frac{\left(\sin^2a\right)^2}{\cos^4a}\)

\(\Leftrightarrow y=\frac{\sin^4a}{\cos^4a}\)

\(\Leftrightarrow y=\tan^4a\)

Vậy \(y=\tan^4a\)

Phan Ưng Tố Như
Xem chi tiết
Nguyễn Thị Thủy Tiên
Xem chi tiết
Trần Bảo Như
12 tháng 8 2018 lúc 17:45

a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)

\(=\tan^2\alpha.\cos^2\alpha=1\)

b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)

\(=\sin\alpha\left(1-\cos^2\alpha\right)\)

\(=\sin\alpha.\sin^2\alpha\)

Nguyễn Thị Thủy Tiên
13 tháng 8 2018 lúc 8:05

bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu

nguyen van tu
Xem chi tiết
Tuyển Trần Thị
29 tháng 9 2017 lúc 19:38

=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)

Nguyễn Văn Cam
Xem chi tiết