Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:42

Trong \(\left( P \right)\) ta có:

\(\left. \begin{array}{l}Ox \bot d\\O'x' \bot d\end{array} \right\} \Rightarrow Ox\parallel O'x'\)

Trong \(\left( Q \right)\) ta có:

\(\left. \begin{array}{l}Oy \bot d\\O'y' \bot d\end{array} \right\} \Rightarrow Oy\parallel O'y'\)

Vậy \(\left( {Ox,Oy} \right) = \left( {O'x',O'y'} \right)\) hay số đo của hai góc \(xOy\) và \(x'Oy'\) bằng nhau.

nam do duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 13:35

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BDC=1/2*180=90 độ

=>BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp

b:

Gọi K là trung điểm của AH

=>K là tâm đường tròn ngoại tiếp tứ giác ADHE

góc KDO=góc KDH+góc ODH

=góc KHD+góc OBD

=90 độ

=>OD là tiếp tuyến của (K)

Aiken
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Hậu
1 tháng 2 2022 lúc 12:42
Khách vãng lai đã xóa
Ngô Nhật Hạ
21 tháng 2 2022 lúc 19:58

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

Khách vãng lai đã xóa
Bùi Quỳnh Chi
21 tháng 2 2022 lúc 22:10

 

 

a,Xét (O1) có góc APH nội tiếp chắn nửa đtròn

⇒ góc APH = 90

Mà góc APH + góc MPH = 190( 2 góc kề bù)

⇒ góc MPH = 90 (1)

Xét (O2) có góc HQB nội tiếp chắn nửa đtròn

⇒ góc HQB = 90

Mà góc HQB + gócHQM   = 190( 2 góc kề bù)

⇒ góc HQM = 90 (2)

Xét (O) có góc AMB nội tiếp chắn nửa đtròn

⇒ góc AMB = 90 hay góc PMQ = 90 (3)

Từ 1 2 3 ⇒ tg PMQH là hcn ( tg có 3 góc vuông)

⇒MH = PQ

b, Xét tg APQB 

Có góc APH =90 (cmt)

      góc HQB =90(cmt)

 ⇒ góc APH = góc HQB = 90

Nên tg APQB nt ( tg có 2 định P và Q kề nhau cùng nhìn cạnh AB dưới những góc bằng nhau bằng 90)

c, Ta có: góc O1PA = góc PAO1

                               = 90 - góc HMP

                               = 90 - góc MPQ

⇒ góc O1PA +góc MPQ=90

⇒ O1PQ = 90

⇒ PQ⊥ PO1

    P tx với nửa đtròn tại p

⇒PQ là tiếp tuyến (O1)

CM tương tự có PQ là tt (O2)

⇒ PQ là tt chung của 2 đtròn O1 và O2

Khách vãng lai đã xóa
hoang khiem pham
Xem chi tiết
Lê Anh Tú
17 tháng 12 2016 lúc 18:25

a) 
► Tính chất của hai tiếp tuyến cùng xuất phát từ một điểm, ta có: 
AC = CM ; BD = MD 
=> AC + BD = CM + MD = CD 
► Câu trên có thể cm trực tiếp bằng cách nối OC => hai tgiác ACO và MCO bằng nhau (vì tgiác vuông, có chung cạnh huyền, OA=OM=R) 
=> OC là tia phân giác của góc AO^M 
tương tự: OD cúng là phân giác cua góc BO^M 
AO^C + CO^M + DO^M + DO^B = 180o 
=> 2.CO^M + 2DO^M = 180o 
=> CO^M + DO^M = CO^D = 90o 
► tgiác COD vuông có OM là đường cao, hệ thức lượng: 
CM.MD = OM² 
=> AC.BD = R² (cm trên: AC=CM; BD=MD; OM=R) 
► ad toilet với chú ý AC//BD 
NC/NB = AC/BD = CM/MD 
định lí đảo talet => MN//AC 
► có: MN//AC//BD => hai tgiác CBD và CNM đồng dạng 
=> CD/CM = DB/MN 
=> CD.MN = CM.DB 
► gọi K là trung điểm CD 
do tgiác OCD vuông tại O => K là tâm đường tròn ngoại tiếp tgíc OCD 
OK là đường trung bình của hình thang ABDC => OK//AC//BD 
=> OK vuông góc AB tại O 
=> AB là tiếp tuyến của đường tròn (OCD) 

b) 
► ta đã cm: AC+BD = CD 
=> AC+BD nhỏ nhất khi CD nhỏ nhất 
Có Ax //By, C thuộc Ax, D thuộc By 
=> CD nhỏ nhất khi CD vuông góc vơi Ax và By 
khi đó ta có ABDC là hình chữ nhật 
=> M là điểm chính giữa của cung AB 
► tứ giác ABDC thường là hình thang vuông, gọi diện tích là S 
S = (1/2)AB.(AC+BD) = (1/2).AB.CD 
vì AB cố định nên S nhỏ nhất khi CD nhỏ nhất 
như câu trên có M là điểm chính giữa cung AB 

c) tgiac OAM cân tại O, lại có OE là phân giác => OE vuông AM 
tương tự OF vuông BM, mà CO^D= 90o 
=> EOFM là hình chữ nhật 
=> I là trung điểm EF cũng là trung điểm OM 
=> OI = OM/2 = R/2 
I di động nhưng luôn có OI = R/2 không đổi 
=> I thuộc đường tròn cố định: tâm O bán kính r = R/2 
** giới hạn: M chỉ di động trên nữa đường tròn (O,R) => I chỉ di động trên nữa đường tròn (O,r) nằm cùng phía với (O,R) so với AB 
<< phần giới hạn là khuyến mãi thêm, vì đề chỉ yêu cầu cm I thuộc một đường tròn cố định, không phải tìm quỉ tích >> 

d) dùng định lí Melanus là nhanh nhất: có ngay E,N,F thẳng hàng => EF/AB = ME.MA = MN/MJ = 1/2 
=> MN = MJ/2 = NJ 

Cô Hoàng Huyền
26 tháng 3 2018 lúc 13:48

Em tham khảo tại link dưới đây nhé.

Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath

Câu c) Đã có IK // AD thì ta vận dụng Ta let và thấy ngay : 

\(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)

hh hh
Xem chi tiết
Son Goku
Xem chi tiết