Chứng minh pt: \(\dfrac{x^4-x^2+mx-3m+1}{x^2-x-2}=m\) luôn có nghiệm với mọi m>1
(Giải bằng kiến thức học từ chương giới hạn, đạo hàm,... lớp 11)
Giúp em câu này với ạ!
Câu 1: Tìm m để biểu thức sau luôn âm: (m-4)x2+ (m+1)x + 2m-1
Câu 2: Tìm m để bất phương trình sau có nghiệm đúng với mọi x:
a/ \(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
b/ \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
GIÚP MÌNH VỚI Ạ!!!
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m-4< 0\\\Delta=-7m^2+38m-15< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m>5\\m< \dfrac{3}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m< \dfrac{3}{7}\)
Giúp mình giải chi tiết về bài này với !
Chứng minh phương trình : \(mx^2-2\left(m+1\right)x+m+2=0\) luôn có nghiệm với mọi m.
Theo Vi-ét ta có:
△' = (m+1)2 -m(m-2)
△' = 1 >0
Vậy pt luôn có nghiệm ∀m
Cho pt:
2x2 + mx + m - 3 = 0
Chứng minh rằng pt có 2 nghiệm phân biệt
Cho pt:
x2 - 2(2m-1)x + 3m2 - 4 = 0
Chứng minh rằng pt luôn có nghiệm với mọi m
Tìm m để x12 + x22 - x1x2 = 5
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
câu 1: cho hệ pt : { (m-2 )x-3y=-5 và x+my=3 .Chứng minh hệ pt có nghiệm duy nhất ,tìm nghiệm đó theo m.
câu 2 :cho p: y= x^2 và d :y=2(m+1)x-3m+2.chứng minh p và d luôn cắt nhau tại 2 điểm phân biệt A,B với mọi m.
cho pt : m(x-2)2X(x+9)+x4-32=0. Chứng minh pt có ít nhất 2 nghiệm với mọi m
Mọi người giải thích hộ em luôn với ạ!
TH1: \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)
TH2: \(m>-1\):
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)
Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)
Vậy pt luôn có ít nhất 2 nghiệm với mọi m
Các bạn giúp mình giải mấy bài toán khó lớp 9 này với! Thank nhiều!?
1)Viết đa thức f(x)= 3x^2-2x+4 theo lũy thừa giảm dần của (x-1) 2)Cho phương trình: x^2-2(m+1)x-3m^2 -2m-1=0 a- Chứng minh rằng: phương trình luôn có 2 nghiệm trái dấu với mọi giá trị của m b- Tìm các giá trị của m để phương trình có nghiệm x=-1 c- Tìm các giá trị của m để phương trình có 2 nghiệm x1,x2 thỏa... hiển thị thêm
Cho phương trình : mx2 - (4m - 2)x + 3m - 2 =0 (1)
a) Chứng minh phương trình (1) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để pt (1) có các nghiệm là nghiệm nguyên.
`mx^2 -2(m+1)x+1-3m=0`
1. CMR: PT đã cho luôn có nghiệm với mọi m
2. Với x khác 0, `x_1 ;x_2` là 2 nghiệm phân biệt của PT. Tìm min \(x_1^2+x_2^2\)
1:Phương trình luôn có nghiệm với mọi m<>0
Sửa đề: Chứng minh
TH1: m=0
Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)
=>1=0(vô lý)
TH2: m<>0
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)
\(=4\left(m+1\right)^2-4m+12m^2\)
\(=4m^2+8m+4-4m+12m^2\)
\(=16m^2+4m+4\)
\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)
\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)
\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)
=>Phương trình luôn có nghiệm với mọi m<>0
2: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)
\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)
\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)
\(=\dfrac{10m^2+6m+4}{m^2}\)
\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)
\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)
\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)
Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)
=>\(\dfrac{2}{m}=-1,5\)
=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)
Với \(m=0\) pt có nghiệm
Với \(m\ne0\)
\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)
Pt luôn có nghiệm với mọi m
b. Câu này chắc đề đúng là "với m khác 0"
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)
\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)
\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)