Cho tam giác ABC vuông tại A. Biết BC=5cm. AH=12/5cm. Tính độ dài AB và AC
Cho tam giác ABC vuông tại A, đường cao AH
a, Cho biết AB = 3cm, BC = 5cm. Tính độ dài đoạn thẳng BH,CH, AH và AC
b, Cho biết AH = 60cm, CH = 144cm. Tính độ dài đoạn thẳng AB, AC, BC, và BH
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm
b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm
c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm
cho tam giác nhọn ABC, kẻ AH vuông góc với BC (H thuộc BC) cho biết AH=12 cm ,BH=5cm và BC =14cm tính độ dài AB và AC
a) Xét t/giác ABH vuông tại H , ta có: AB2 = AH2 + BH2 (Pi - ta - go)
=> AB2 = 122 + 52 = 169 => AB = 13 (cm)
Ta có: HC + BH = BC => HC = BC - BH = 14 - 5 = 9 (cm)
Xét t/giác AHC vuông tại H, có: AC2 = HC2 + AH2 (Pi - ta - go)
=> AC2 = 92 + 122 = 225 => AC = 15 (cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+5^2=169\)
hay AB=13(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=14-5=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+9^2=225\)
hay AC=15(cm)
Vậy: AB=13cm; AC=15cm
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Cho tam giác ABC vuông tại A, có đường cao AH (H thuộc BC). Biết độ dài đoạn AC bằng 5cm, đoạn HC bằng 4cm. Tính độ dài các cạnh AB và BC.
Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:
\(AC^2=AH^2+HC^2\) (định lí pitago)
\(\Rightarrow AH^2=AC^2-HC^2\)
\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)
\(\Rightarrow AB=3,75\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)
\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)
\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=4+2,25=6,25(cm)
\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
Cho tam giác ABC vuông tại A đcao AH (H thuộc BC) biết BC=5cm,sinB=\(\dfrac{4}{5}\) Tính độ dài các đoạn thẳng AC,AB,AH
Cho tam giác ABC vuông tại A có AB = 5cm BC = 13cm kẻ AH vuông góc với BC tại H. Tính độ dài AH, CH, BH, AC.
Lời giải:
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
Cho tam giác ABC vuông tại A , đường cao AH
a, Cho biết AB = 3cm ,BC=5cm . Tính độ dài các đoạn thẳng BH, CH , AH và AC
b, Cho biết AH bằng 16 cm , BH=25cm . Tính độ dài các đoạn thẳng AB, AC , BC và CH
12AB.AC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
12AH.BC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
12AB.AC=12AH.BC" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
AB.ACBC=3.45=2,4(cm)" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881
=> AB =
Lại có : BH.HC = AH2
<=> HC.25 = 162
<=> HC.25 = 256
<=> HC = 256 : 25 = 10,24
Ta có : BC = HC + BH = 10,24 + 25 = 35,24
Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576
=> AC =
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BH , CH , AH , AC , nếu biết :
1, AB =20 cm , BC= 25cm
2, AB= 5cm, BC= 1dm
1: \(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\sqrt{20^2-12^2}=16\left(cm\right)\)
CH=BC-BC=9(cm)
2: \(BC=10cm\)
\(AC=5\sqrt{3}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{10}=2.5\left(cm\right)\)
CH=BC-BH=7,5(cm)
Cho tam giác ABC , vẽ AH vuông góc với BC tại H (H thuộc BC ) biết AC =5cm , BC =9cm , AH =4cm . Tính độ dài AB .
Hình vẽ:
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có:
\(AC^2=AH^2+HC^2\)( định lý py-ta-go )
\(\Rightarrow5^2=4^2+HC^2\)
\(\Rightarrow HC^2=5^2-4^2\)
\(\Rightarrow HC^2=25-16\)
\(\Rightarrow HC^2=9\)
\(\Rightarrow HC=\sqrt{9}\)
\(\Rightarrow HC=3cm\)
Ta có: \(BH+HC=9cm\)
mà \(HC=3cm\left(cmt\right)\)
\(\Rightarrow BH=9-3=6cm\)
Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )
\(\Rightarrow AB^2=4^2+6^2\)
\(\Rightarrow AB^2=16+36\)
\(\Rightarrow AB^2=52\)
\(\Rightarrow AB=\sqrt{52}cm\)
Vậy độ dài cạnh AB là \(\sqrt{52}cm\)
Cho tam giác ABC có AH vuông góc với BC .Biết AB=5cm,AC=5cm,Bc=căn50 a) Tam giác ABC có phải là tam giác vuông không ? b) Chứng minh tam giác AHC cân.Tính độ dài cạnh AH
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)