Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 11:14

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

Page One
10 tháng 4 2022 lúc 22:14

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

A bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 19:56

loading...  loading...  

White Silver
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 9:53

a:góc MBO+góc MAO=180 độ

=>OAMB nội tiếp

b: Xét ΔMCA và ΔMAD có

góc MAC=góc MDA
góc CMA chung

=>ΔMCA đồng dạng với ΔMAD

=>MA^2=MC*MD

hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:43

a) Xét tứ giác OAMC có 

\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Lê Thị Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:00

a: góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

b: CE//BD

=>góc AKM=góc AEC=góc ACM

=>AKCM nội tiếp

=>A,K,C,M cùng nằm trên 1 đường tròn

=>góc OKM=90 độ

=>K là trung điểm của BD

 

Nam Hoàng
Xem chi tiết
Nam Hoàng
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Tomioka Yuko
15 tháng 12 2021 lúc 16:54

a) Ta có: ΔOHA∼ΔOAM(g.g)ΔOHA∼ΔOAM(g.g)

⇔OHOA=OAOM⇔OA2=OH.OM=R2⇔OHOA=OAOM⇔OA2=OH.OM=R2

b) Ta có: ΔOAMΔOAM vuông tại A

ΔOIMΔOIM vuông tại I.

=> OM là cạnh huyền chung của hai tam giác trên

=> ˆOIM;ˆOAMOIM^;OAM^ cùng chắn OM

Vậy O, I, A, M cùng nằm trên đường tròn đường kính OM

c) Ta có: ΔOMI∼ΔOKH(g.g)ΔOMI∼ΔOKH(g.g)

⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇒OCOK=OIOC⇒OCOK=OIOC

Xét ΔOCKvàΔOICΔOCKvàΔOIC

OCOK=OIOCOCOK=OIOC

ˆO:chungO^:chung

⇒ΔOCK∼ΔOIC(c.g.c)⇒ˆOCK=ˆOIC=90o⇒OC⊥OK⇒ΔOCK∼ΔOIC(c.g.c)⇒OCK^=OIC^=90o⇒OC⊥OK

=> KC là tiếp tuyến đường tròn (O; R)

Tomioka Yuko
15 tháng 12 2021 lúc 17:00

Cho (O;R) và 1 điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với  đường tròn ( A là tiếp điểm ) . Tia Mx nằm giữa MA và

tham khảo hình bạn nhé?

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 23:45

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

rbee nguyen
Xem chi tiết
Vũ Tuấn Đạt
18 tháng 1 2024 lúc 0:03

Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi . 

OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh