tìm GTNN của Q = \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\) với a,b,c >0 và a+b+c=1
tìm GTNN của P=\(\frac{a}{a+9b^2}+\frac{b}{b+9c^2}+\frac{c}{c+9a^2}\)
với a,b,c dương và \(a+b+c=1\)
Câu hỏi của saadaa - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Bài đó và bài này khác nhau mà cô Nguyễn Linh Chi ?
Cho các số dương a, b, c thỏa mãn a + b + c = 1. Tìm GTNN của:
T = \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)
cho a, b, c là các só thực dương thỏa mãn a+b+c=1. tìm GTNN của bt sau
\(P=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)
\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)
Tương tự với các biểu thức còn lại, kết hợp với
\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)
là được đáp án.
cho a;b;c>0 thỏa mãn a+b+c=1.Tìm Max của bt:
\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
cho a;b;c>0 thỏa mãn abc=1.Tìm Max của bt:
\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)
\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp
ĐỐ NHÉ!!!!!!!!!!!!
Cho a,b,c >0 và a+b+c=1. Tìm MAX
\(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
cho các số thực fuwowng a,b,c thỏa mãn:a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
\(p=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
trái nghĩa với từ chắt chiu là gì
trái nghĩa với từ chắt chiu là gì .
Trái nghĩa với chắt chiu là phung phí
(1,0 điểm) Với các số $a,b,c>0$ và thỏa mãn $a+b+c=1$.
Chứng minh:
$\displaystyle \frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2} \ge \frac{1}{2}$.
Ta có: \(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{3ab}{2}\)
\(\Rightarrow\)\(\text{Σ}\dfrac{a}{1+9b^2}\ge a+b+c-\dfrac{3\left(ab+bc+ca\right)}{2}\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2}=\dfrac{1}{2}\)
(Áp dụng BĐT Cô Si cho 2 số dương, ta có:
\(\text{ }ab+bc+ca\le a^2+b^2+c^2\Rightarrow3\left(\text{ }ab+bc+ca\right)\le\left(a+b+c\right)^2\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho các số dương a , b, c thỏa mãn điều kiện : a + b + c =1
CMR : \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\ge\frac{1}{2}\)
\(VT=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)
\(VT=a-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}\)
\(VT\ge a+b+c-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(VT\ge1-\frac{3}{2}\left(ab+bc+ca\right)\)
\(VT\ge1-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)