Tìm đa thức A, biết
A = (2x2+xy-5x3y2+z) - (-2x2+xy-z+5x3y2)
Tìm bậc của các đa thức sau:
A= 6x4-5x2+4x-3x4+2x3 B=-5x3y2+4x2y2-x3+8x2y2+5x3y2
C=\(\dfrac{1}{2}\)x4y4+6x6+\(\dfrac{1}{2}\)x4y4-5x4y3-x4y4 D=3x2y-\(\dfrac{1}{4}\)xy+1-3x2y+\(\dfrac{1}{2}\)xy-\(\dfrac{1}{4}\)xy
A= 6x4-5x2+4x-3x4+2x3
A = 3x4 -5x2 +2x3
Bậc là: 4
B= -5x3y2+4x2y2-x3+8x2y2+5x3y2
B = 12x2y2 -x3
Bậc là : 4
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
Bài 3: Tính tích hai đơn thức sau và tìm bậc của đơn thức thu được :
a, 25xy2 và -1/5 xy 3
b, -5x2y 2 và 3xy2 z
c, 1 2 xy 2 và 4xyz
d, -5x2yz2 và 2x2 z
a. \(25xy^2.-\dfrac{1}{5}xy^3=-5x^2y^5\) -Bậc: 7
b.\(-5x^2y^2.3xy^2z=-15x^3y^4z\) - Bậc: 8
c.\(12xy^2.4xyz=48x^2y^3z\) - Bậc: 6
d. \(-5x^2yz^2.2x^2z=-10x^4yz^3\) ; Bậc: 8
a, \(=-5x^2y^5\)bậc 8
b, \(=-15x^3y^4z\)bậc 8
c, \(=2x^3y^3z\)bậc 7
d, \(=-10x^4yz^3\)bậc 8
cho đa thức: K=2x2 - 6xy + 5x2y - 3y, N=3x2 + xy - 6x2y + 2
a) tính P biết P+N=K, b) tính Z=P+N
a: P+N=K
nên P=K-N
\(=2x^2-6xy+5x^2y-3y-3x^2-xy+6x^2y-2\)
\(=-x^2-7xy+11x^2y-3y-2\)
b> Z=P+N
\(=-x^2-7xy+11x^2y-3y-2+3x^2+xy-6x^2y+2\)
\(=2x^2-6xy+5x^2y-3y\)
Tìm đa thức P và đa thức Q, biết:
Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
⇒ Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
= xy + 2x2 – 3xyz + 5 + 5x2 – xyz
= (2x2+ 5x2) + (- 3xyz – xyz) + xy + 5
= 7x2 – 4xyz + xy + 5.
Tìm đa thức Q, biết:
a) Q - (5x2 - xyz)= xy + 2x2 - 3xyz + 5
\(Q-\left(5x^2-xyz\right)=xy+2x^2-3xyz+5\)
\(\Leftrightarrow Q=xy+2x^2-3xyz+5+5x^2-xyz\)
\(\Leftrightarrow Q=7x^2+xy-4xyz+5\)
\(Q-\left(5x^2-xyz\right)=xy+2x^2-3xyz+5\\ Q=xy+2x^2-3xyz+5+5x^2-xyz\\ Q=7x^2+xy-4xyz+5\)
Phân tích đa thức thành nhân tử:
a) m x 2 + my - n x 2 - ny; b) mz - 2z - m 2 + 2m;
c) x 2 y 2 + y 3 + z x 2 + yz; d) 2x2 + 4mx + x + 2m.
e) x 4 - 9 x 3 + x 2 - 9x; g) 3 x 2 -2 ( x - y ) 2 - 3 y 2 .
h*) xy(x + y) + yz (y + z) + xz(x + z) + 2xyz.
Phân tích các đa thức sau thành nhân tử
a,2x2+3xy-14y2
b,(x-7)(x-5)(x-3)(x-1)+7
c,(x-3)2+(x-3)(3x-1)-2(3x-1)2
d,xy(x-y)+yz(y-z)+zx(z-x)
f,x(y+z)2+y(z+x)2+z(x+y)2-4xyz
a: \(2x^2+3xy-14y^2\)
\(=2x^2+7xy-4xy-14y^2\)
\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)
\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)
\(=\left(2x+7y\right)\left(x-2y\right)\)
b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)
\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)
\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)
\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)
\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)
\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)
\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)
c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)
\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)
\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)
\(=\left(7x-5\right)\left(-2x-2\right)\)
\(=-2\left(x+1\right)\left(7x-5\right)\)
d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)
\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)
\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)
\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)
\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)
\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)
\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)
\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
y / 2x2-xy+4x / 2xy-x2
1 / (x-y)(y-z) + 1 / (y-z)(z-x) + 1 / (z-x)(x-y)
x-y / xy + y-z / yz + z-x / zx
Thực hiện pt
a: \(\dfrac{y}{2x^2-xy}+\dfrac{4x}{2xy-x^2}\)
\(=\dfrac{y}{x\left(2x-y\right)}+\dfrac{4x}{x\left(2y-x\right)}\)
\(=\dfrac{y\left(2y-x\right)+4x\left(2x-y\right)}{x\left(2x-y\right)\left(2y-x\right)}\)
\(=\dfrac{2y^2-xy+8x^2-4xy}{x\left(2x-y\right)\left(2y-x\right)}=\dfrac{8x^2-5xy+2y^2}{x\left(2x-y\right)\left(2y-x\right)}\)
b: \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\dfrac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)