phân tích thành nhân tử:
\(x+\sqrt{x}+1\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích thành nhân tử với x>=0
a, x-1
b, x-\(\sqrt{x}\)-2
c, x\(\sqrt{x}\)+1
a) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
b) \(x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+1\right)\)
c) \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\\ b.x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\\ c.x\sqrt{x}+1=\sqrt{x^3}+\sqrt{1^3}=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
Tham Khảo:
a) x−1=(√x−1)(√x+1)x−1=(x−1)(x+1)
b) x−√x−2=(√x−2)⋅(√x+1)x−x−2=(x−2)⋅(x+1)
c) x√x+1=(√x+1)(x−√x+1
Phân tích đa thức thành nhân tử x*\(\sqrt{x}\) +1
\(=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
Phân tích thành nhân tử ( với x > hoặc bằng 0 )
\(x\sqrt{x}-1\)
\(=\left(\sqrt{x}\right)^3-1^3=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(x\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
Phân tích thành nhân tử: x * sqrt(x) + 2x + sqrt(x) +2(với x>0)
\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)
\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)
\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-5\)
\(x+7\sqrt{x}+10\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)
b2 phân tích đa thức thành nhân tử
1) x - 9
2) x - 16
3) 9x - 1
4) x\(\sqrt{x}\)+ 1
1: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
2: \(x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\)
3: \(9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\)
4: \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(1,x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\\ 2,x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\\ 3,9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\\ 4,x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
1,x−9=(√x−3)(√x+3)
2,x−16=(√x−4)(√x+4)
3,9x−1=(3√x−1)(3√x+1)
4,x√x+1=(√x+1)(x−√x+1
tick nha thanksphân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)