Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 20:12

a, Ta có : \(\left\{{}\begin{matrix}\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\end{matrix}\right.\)

- Thay lần lượt vào A ta được :

\(A=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)=2.2\sqrt{2}=4\sqrt{2}\)

b, \(B=\sqrt{2+\sqrt{3}}\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}=\sqrt{2+\sqrt{3}}\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}=\sqrt{4-3}=\sqrt{1}=1\)

c, \(C=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(=\dfrac{2\sqrt{2}+\sqrt{6}-2\sqrt{2-\sqrt{3}}-\sqrt{3}\sqrt{2-\sqrt{3}}+2\sqrt{2}-\sqrt{6}+2\sqrt{2+\sqrt{3}}-\sqrt{3}\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(=\dfrac{4\sqrt{2}-2\sqrt{3}\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

 

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 20:11

a) Ta có: \(A=\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)

\(=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)\)

\(=2\cdot2\sqrt{2}=4\sqrt{2}\)

 

 

Trọng Hà Bùi
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2023 lúc 22:04

a: \(A=\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{3\cdot\sqrt{2+\sqrt{3}}}=\dfrac{4\left(\sqrt{3}+1\right)}{3\cdot\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{4\left(\sqrt{3}+1\right)}{3\left(\sqrt{3}+1\right)}=\dfrac{4}{3}\)

b: \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\left|3\sqrt{5}-3\right|\)

\(=\sqrt{5}-\sqrt{3}-3\sqrt{5}+3=3-\sqrt{3}-2\sqrt{5}\)

Tô Mì
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 19:59

1:

\(A=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{2-\sqrt{3}}}\cdot\sqrt{2^2-\left(2+\sqrt{2-\sqrt{3}}\right)}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{2-\sqrt{3}}}\cdot\sqrt{2-\sqrt{2-\sqrt{3}}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{4-2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Nguyễn Gia Phúc
3 tháng 8 2023 lúc 10:25

 

Hoàng Linh Chi
Xem chi tiết
Hoàng Tử Hà
17 tháng 6 2019 lúc 19:54

a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)

\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)

b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)

\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)

c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)

\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)

d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)

\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)

Phạm Băng Băng
Xem chi tiết
santa
26 tháng 9 2020 lúc 22:05

hộ mình câu c ạ :(((

Khách vãng lai đã xóa
tam nguyen
Xem chi tiết
Duc nguyen tri
Xem chi tiết
Võ Nguyễn
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2020 lúc 17:14

Ta có: \(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}\right)^2-\left(\sqrt{5-3\sqrt{2}}\right)^2}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{\left(\sqrt{3+\sqrt{2}}\right)^2-\left(\sqrt{3-\sqrt{2}}\right)^2}\)

\(=\frac{3\left[\left(\sqrt{5+3\sqrt{2}}\right)^2+2\cdot\sqrt{5+3\sqrt{2}}\cdot\sqrt{5-3\sqrt{2}}+\left(\sqrt{5-3\sqrt{2}}\right)^2\right]}{\left|5+3\sqrt{2}\right|-\left|5-3\sqrt{2}\right|}-\frac{\left(\sqrt{3+\sqrt{2}}\right)^2+2\cdot\sqrt{3+\sqrt{2}}\cdot\sqrt{3-\sqrt{2}}+\left(\sqrt{3-\sqrt{2}}\right)^2}{\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|}\)

\(=\frac{3\left(\left|5+3\sqrt{2}\right|+2\sqrt{7}+\left|5-3\sqrt{2}\right|\right)}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left|3+\sqrt{2}\right|+2\cdot\sqrt{7}+\left|3-\sqrt{2}\right|}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(5+3\sqrt{2}+2\sqrt{7}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\frac{3+\sqrt{2}+2\sqrt{7}+3-\sqrt{2}}{3+\sqrt{2}-3+\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{6+2\sqrt{7}}{2\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{3\left(6+2\sqrt{7}\right)}{6\sqrt{2}}\)

\(=\frac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}\)

\(=\frac{12}{6\sqrt{2}}=\sqrt{2}\)

Vậy: \(A=\sqrt{2}\)