Tìm m để pt để bt A= \(\frac{2x_1x_2+3}{x_1^2+x^2_2+2\left(x_1x_2+1\right)}\)dat GTNN
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Cho pt:\(x^2\)-2(m-1)x-m-3=0.
Tìm m >1 để bt A=\(\dfrac{2x^2_1+2x^2_2-2x_1x_2}{x_1+x_2}\)đạt GTNN
\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)
\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)
\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)
Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)
Cho pt: \(2x^2+2mx+m^2-2=0\). Gọi \(x_1,x_2\) là 2 nghiệm của pt.Tìm GTNN và GTLN của biểu thức A=\(\frac{2x_1x_2+3}{x_1^2+x^2_2+2\left(x_1x_2+1\right)}\)
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Khi đó ta có \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{m^2+1}{m^2+2}=1-\frac{1}{m^2+2}\)
Do \(0\le m^2\le4\Rightarrow\frac{1}{6}\le\frac{1}{m^2+2}\le\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}A_{min}=1-\frac{1}{2}=\frac{1}{2}\Rightarrow m=0\\A_{max}=1-\frac{1}{6}=\frac{5}{6}\Rightarrow m=\pm2\end{matrix}\right.\)
Cho phương trình
x\(^2-mx+m-1\)=0
Tìm m để biểu thức
A=\(\frac{2x_1x_2+3}{x_1^2+x^2_2+2\left(x_1x_2+1\right)}\)dạt giá trị nhỏ nhất
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=m\end{cases}}\)
Thay vào biểu thức, ta được :
\(A=\frac{2\left(m-1\right)+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{-\frac{1}{2}\left(m^2+2\right)+\frac{m^2}{2}+2m+2}{m^2+2}\)
\(=-\frac{1}{2}+\frac{\frac{\left(m+2\right)^2}{2}}{m^2+2}\ge\frac{-1}{2}\)
Vậy GTNN của A là \(\frac{-1}{2}\)khi m = -2
CẦN GẤP
Cho pt: \(x^2-mx+1005m=0\) có 2 nghiệm \(x_1,x_2\)
Tìm m để biểu thức M đạt GTNN
\(M=\frac{2x_1x_2+2680}{x_1^2+x_2^2+2\left(x_1x_2+1\right)-1}\)
cho pT \(x^2-mx+m-1=0\)
a) tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) mà \(\left|x_1\right|+\left|x_2\right|=6\)
b) tính P theo m, biết \(P=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)
c) tìm m để P đạt \(MIN,MAX\)
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
b) \(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)
\(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}\)
\(P=\frac{2m-2+3}{m^2+2}=\frac{2m+1}{m^2+2}\)
vậy \(P=\frac{2m+1}{m^2+2}\)
c) \(P=\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1-\frac{m^2-2m+1}{m^2+2}\)
\(P=1-\frac{\left(m-1\right)^2}{m^2+2}\le1\)
dấu \("="\) xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)
vậy \(MAX\) \(P=1\Leftrightarrow m=1\)
\(P=\frac{2m+1}{m^2+2}=\frac{4m+2}{2\left(m^2+2\right)}=\frac{m^2+4m+4-m^2-2}{2\left(m^2+2\right)}\)
\(P=\frac{\left(m+2\right)^2-m^2-2}{2\left(m^2+2\right)}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{m^2+2}{2\left(m^2+2\right)}\)
\(P=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{1}{2}\)
dấu \("="\) xảy ra \(\Leftrightarrow m+2=0\Leftrightarrow m=-2\)
vậy \(MIN\) \(P=\frac{1}{2}\Leftrightarrow m=-2\)
Cho phương trình
x2−mx+m−1
a. Chứng minh phương trình trên luôn có nghiệm x1, x2 với mọi giá trị của m
b. TÌm m để biểu thức A=\(\frac{2x_1x_2+3}{x_1^2+x^2_2+2\left(x_1x_2+1\right)}\)
Cho pt \(x^2-mx+m-1=0\) (ẩn x)
a) cm pt đã cho luôn có 2 nghiệm \(x_1,x_2\) với mọi m
b)Tìm gtri m để \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)
\(a+b+c=1-m+m-1=0\)
\(\Rightarrow\) Pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(\frac{2.1\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(1+m-1\right)}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
Cho pt \(x^{^{ }2}-\left(m-2\right)x-6=0\) với m là tham số . Tìm các giá trị của m để \(x^2_2-x_1x_2+\left(m-2\right)x_1=16\)
Giúp mình với ạ mình đang cần gấp ạ