\(M\left(x\right)=x^3-4x\). Tìm nghiệm của đa thức.
Cho hai đa thức: \(P\left(x\right)=5x^3-4x+7\) và \(Q\left(x\right)=-5x^3-x^2+4x-5\)
a) Tìm đa thức M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
b)Tìm nghiệm của đa thức M(x) + 2
a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy tập nghiệm đa thức trên là S = { -2 ; 2 }
Tìm nghiệm của các đa thức sau:
a) \(\left(2x-\dfrac{3}{2}\right)\left(\left|x\right|-5\right)\)
b) \(x-8x^4\)
c) \(x^2-\left(4x+x^2\right)-5\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
\(M\left(x\right)=x^2-4x+3\) \(CMR:x=3\)là nghiệm của đa thức M(x) và x = -1 k phải là nghiệm của đa thức M(x)
Cho \(C\left(x\right)=5-8x^4+2x^3+x+5x^4+x^2-4x^3\) và \(D\left(x\right)=\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
a)Thu gọn và sắp xếp các đa thức theo lũy thừa giàm dần của biến.
b)Tính P(x)=D(x)+C(x);Q(x)=C(x)-D(x).
c)Chứng tỏ x=1 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x).
d)Tìm nghiệm của đa thức F(x)=Q(x)-(\(-2x^4+2x^3+x^2-12\))
1/ Cho đa thức :
\(A\left(x\right)=3x^4+5x^2-4x-4x^3-3\)Và \(B\left(x\right)=6-3x^4+2x+4x^3-5x^2\)
Tính M(x) = A(x) + B(x) , rồi tinh nghiệm của đa thức M(x) Tìm đá hức C(x) sao cho : C(x) + B(x) =-A(x)Cho hai đa thức: \(P\left(x\right)=x^4+5x^3-4x^2+3x+m\)và \(Q\left(x\right)=x^4+4x^3-3x^2+2x+n\)
a) Tìm giá trị của m,n để các đa thức P(x) và Q(x) chia hết cho ( x -2 )
b) Xét đa thức R(x) = P(x) - Q(x) với giá trị m,n vừa tìm được. Hãy chứng tỏ rằng đa thức R(x) chỉ có một nghiệm duy nhất.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
1. Tìm nghiệm của các đa thức sau :
a) \(m\left(x\right)=x^2+7x-8\)
b) \(g\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
c) \(n\left(x\right)=5x^2+9x+4\)
2. Cho đa thức \(P\left(x\right)=mx-3\). Xác định m biết \(P\left(-1\right)=2\)
3. Cho đa thức \(Q\left(x\right)=-2x^2+mx-7m+3\). Xác định m biết Q(x) có nghiệm là -1.
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Cho đa thức: \(A\left(x\right)=3x^2+5x-4x^4-x^3+x^2+7\)
\(B\left(x\right)=3x^3-4x^4+8-2x^3-2x^2+x\)
a) Tìm đa thức C(x) sao cho B(x)+C(x)=A(x)
b) Tìm nghiệm của đa thức C(x)