cosx- √2 sinx/sinx-1/2=0
mn giúp mk với ạ mình cần gấp ạ
1) chứng minh:
sin^4 x + sin^2 x * cos^2 x + 3cos^2 x =1+2 sin^ 2 x|
2) cho sinx * cosx =√3/4, tính sinx, cosx, tanx, cotx
em cần gấp trc 7h ạ nên giúp em vs
2: \(\left(sinx+cosx\right)^2=1+2\cdot sinx\cdot cosx=1+2\cdot\dfrac{\sqrt{3}}{4}=1+\dfrac{\sqrt{3}}{2}=\dfrac{2+\sqrt{3}}{2}\)
=>\(sinx+cosx=\dfrac{\sqrt{3}+1}{2}\)
mà sin x*cosx=căn 3/4
nên sinx,cosx là các nghiệm của phương trình là:
\(a^2-\dfrac{\sqrt{3}+1}{2}\cdot a+\dfrac{\sqrt{3}}{4}=0\)
=>\(\left[{}\begin{matrix}a=\dfrac{\sqrt{3}}{2}\\a=\dfrac{1}{2}\end{matrix}\right.\)
Ta sẽ có hai trường hợp:
TH1: sin x=căn 3/2; cosx=1/2
tan x=sinx/cosx=căn 3
cot x=1/căn 3
TH2: sin x=1/2; cosx=căn 3/2
tan x=sin x/cosx=1/căn 3
cot x=1:1/căn 3=căn 3
cho góc nhọn x biết
1. sinx=1/4 tính cosx. 2. tgx= 1/3, tính sinx.
mọi người giúp mình với ạ
1.
\(sin^2x+cos^2x=1\Rightarrow\left(\dfrac{1}{4}\right)^2+cos^2x=1\)
\(\Rightarrow cos^2x=\dfrac{15}{16}\Rightarrow cosx=\dfrac{\sqrt{15}}{4}\)
2.
\(tanx=\dfrac{1}{3}\Rightarrow tan^2x=\dfrac{1}{9}\Rightarrow\dfrac{sin^2x}{cos^2x}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{sin^2x}{1-sin^2x}=\dfrac{1}{9}\Rightarrow9sin^2x=1-sin^2x\)
\(\Rightarrow sin^2x=\dfrac{1}{10}\Rightarrow sinx=\dfrac{\sqrt{10}}{10}\)
Sin4x - (sinx)^3.cosx+ 6.(sinx)^2.(cosx)^2 + 3.sinx.(cosx)^3 + 5cos4x=2
Giúp mk vs ạ cảm ơn....
Chứng minh VT=VP:
a) 2.(sinx+cosx+1)2.(sinx+cosx-1)2=1-cos4x
b) \(\frac{\text{3-4cos2a+cos4a}}{\text{3+4cos2a+cos4a}}\)= tan4a
c) (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x
Cần GẤP ạ! Cảm ơn nhiều ạ!
Giải phương trình: 15 sinx+cosx=24 Mình đang cần gấp,mình cảm ơn rất nhiều ạ
Giải thích các bước giải:
⎡⎢⎣3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)[3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)
Cho sinx + cosx = √2. CMR: sinx=cosx. Tìm x
Giải giúp mình mọi người nhé mình đang cần gấp!
Chứng minh VT=VP:
a) 2.(sinx+cosx+1)2.(sinx+cosx-1)2=1-cos4x
b) \(\frac{\text{3-4cos2a+cos4a}}{3+\text{4cos2a+cos4a}}\)= tan4a
c) (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x
Cần GẤP ạ! Cảm ơn nhiều ạ!
\(2\left[\left(sinx+cosx+1\right)\left(sinx+cosx-1\right)\right]^2\)
\(=2\left[\left(sinx+cosx\right)^2-1\right]^2=2\left(sin^2x+cos^2x+2sinx.cosx-1\right)^2\)
\(=2\left(2sinx.cosx\right)^2=2sin^22x=1-cos4x\)
b/ \(\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a+1\right)}{2\left(cos^22a+2cos2a+1\right)}=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}\)
\(\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{4sin^4a}{4cos^4a}=tan^4a\)
c/ \(cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^2x\)
\(=1-sin4x+sin4x+sin2x-sin2x-sin^2x\)
\(=1-sin^2x=cos^2x\)
Giải pt:
1-3sinxcosx -sinx +cos^2 (x) +cosx=0.
Giải giúp mình với ạ. Mình đang cần gấp ạ.
\(\Leftrightarrow2-6sinx.cosx-2sinx+2cosx+2cos^2x=0\)
\(\Leftrightarrow3\left(1-2sinx.cosx\right)-2\left(sinx-cosx\right)+cos^2x-sin^2x=0\)
\(\Leftrightarrow3\left(sinx-cosx\right)^2-2\left(sinx-cosx\right)-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\sinx-2cosx=1\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow\frac{1}{\sqrt{5}}sinx-\frac{2}{\sqrt{5}}cosx=\frac{1}{\sqrt{5}}\)
Đặt \(\frac{1}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sinx.cosa-cosx.sina=cosa\)
\(\Leftrightarrow sin\left(x-a\right)=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=\frac{\pi}{2}-a+k2\pi\\x-a=a+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=2a+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
sin^3 x +cos^3 x -3sinx cosx+1=0
3 cosx -3sin2x= √3(cos2x+sinx)
4sin^3x +3sin^2x cosx -sinx-cos^3x=0
√3sin4x-cos4x=sinx- √3cosx
m.n giúp mk chứng minh với ạ