Cho a + b + c = a2 + b2 + c2 = 1 và\(\dfrac{x}{a}\)=\(\dfrac{y}{b}\)=\(\dfrac{z}{c}\)( a≠0,b≠0,c≠0 )
Chứng minh rằng (x+y+z)2=x2+y2+z2
Giúp mình với ạ, mai mình thi rồi !!!!
Cho a+b+c = a2+b2+c2=1 và \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) và ( a,b,c ≠ 0 )
Hãy chứng minh (x+y+z)2=x2+y2+z2
Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))
Cho a/x+b/y+C/z=2 và x/a+y/b+z/c=0 . Chứng minh A=x2/a2+y2/b2+z2/c2=1
Cho x,y,z khác 0 và A=\(\dfrac{y}{z}\)+\(\dfrac{z}{y}\) ; B=\(\dfrac{x}{z}+\dfrac{z}{x}\); C=\(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính giá trị biểu thức : A2+B2+C2-ABC
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
Cho a, b, c là các số ≠ 0
a+b+c=1 ; a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Tính xy +yz + zx
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)
Từ (1) và (2)
\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx=0\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
cho a+b+c =a2+b2+c2=1 và x/a=y/b=z/c (a,b,c khác 0 )
hãy cm:(x+y+y)2=x2+y2+z
Áp dụng tính chất các dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)
\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)
\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho a+b+c=0 ; \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0. Chứng minh rằng: a2+b2+c2=1
1/a+1/b+1/c=0
=>(ab+ac+bc)/abc=0
=> ab+ac+bc=0
(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0
=> a^2+b^2+c^2=0
Bạn xem lại đề nhé.