cho \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
tính giá trị biểu thức \(P=x^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{2023}\)
Xét 2 biểu thức:
P=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
và Q=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
a,Chứng minh rằng P=1 thì Q=0
b,Nếu Q=0 thì có nhất thiết là P=1 không?
Cho các số a,b,c khác 0. Tính giá trị của biểu thức:
T=\(x^{2016}+y^{2016}+z^{2016}\) biết x,y,z thõa mãn \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Cho x,y,z là ba số khác 0 và x+y+z=0. tính giá trị biểu thức:
\(\dfrac{xy}{x^2+y^2-z^2}\)+ \(\dfrac{xz}{x^2+z^2-y^2}\)+\(\dfrac{yz}{y^2+z^2-x^2}\)
Cho x, y, z khác 0 thỏa mãn:
x3+y3+z3=1
x(\(\dfrac{1}{z}+\dfrac{1}{y}\))+y(\(\dfrac{1}{x}+\dfrac{1}{z}\))+z(\(\dfrac{1}{x}+\dfrac{1}{y}\))=-2
Tìm giá trị của: S=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
c) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Cho x, y, z khác 0 thỏa mãn:
x(\(x^2-\dfrac{1}{y}-\dfrac{1}{z}\)) + y(\(y^2-\dfrac{1}{z}-\dfrac{1}{x}\)) + z(\(z^2-\dfrac{1}{x}-\dfrac{1}{y}\)) = 3
Tính : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Cho \(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
và \(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Chứng minh nếu P=1 thì Q=0
Tính \(A=\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\) biết\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)