Tìm giá trị nhỏ nhất của hàm số sau:
\(y=\sqrt{x^2+1}+\sqrt{4x^2-4x+2}+\sqrt{9x^2-30x+29}\)
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9},x>0\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\) với x > 0
ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\), \(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.
bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.
đáp án: Min A= 2
Phan Quỳnh Anh Cách của bạn không ổn đâu, với lại kết quả bạn chưa đúng ^^
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\) với x > 0
ê tuấn nếu cô-si thì mk nghĩ phải =2 chứ sao =1 được
1) giá trị lớn nhất của hàm số \(y=-\sqrt{x-2}+\sqrt{4-x}\)
2)GTLN của hàm số \(y=\dfrac{1}{4}x^2-x-\sqrt{4x-x^2}\)
đang cần gấp ạ
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất của \(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}}\)+ \(\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\)với x>0
(chắc chắn đúng đề mặc dù hơi vô li)
Tìm giá trị nhỏ nhất của hàm số:
\(y=\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}.\)
Trước hết bằng phép biến đổi tương đương ; ta chứng minh bất đẳng thức phụ sau:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}...\)
Biểu diễn:
\(y=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-2x+2}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{9}{4}}+\sqrt{\left(1-x\right)^2+1}\right)\)
\(\ge\sqrt{2}\sqrt{\left(x-\frac{1}{2}+1-x\right)^2+\left(\frac{3}{2}+1\right)^2}=\sqrt{13}.\)
Vậy giá trị nhỏ nhất của \(y=\sqrt{13}\Leftrightarrow x=\frac{4}{5}.\)
Tìm giá trị nhỏ nhất của biểu thức:
a) A = \(\sqrt{4x^2+4x+2}\)
b) B = \(\sqrt{2x^2-4x+5}\)
c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
d) D = \(x-2\sqrt{x+2}\)
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
d)D=\(x-2\sqrt{x+2}=\left(x+2\right)-2\sqrt{x+2}+1-3\)
\(=\left(\sqrt{x+2}-1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\)
Tìm giá trị nhỏ nhất của biểu thức:\(A=\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
\(A=3x-1+5-3x=4\)
\(A\)có giá trị ko phụ thuộc vào biến x