I x+1I +I x+2I + I x+3 I + I x+4 I = 5x
a) I x+1I +I x+2I + I x+3 I = 4x
b) I x+1I +I x+2I + I x+3 I + I x+4 I = 5x
c) I x+2I +I x+3/5I + x + 1/2 = 4x
a) |x+1|+|x+2+|x+3|=4x
<=> x+1+x+2+x+3=4x
<=> 3x+6=4x
<=> 6=4x-3x
<=> x=6
b) |x+1|+|x+2|+|x+3|+|x+4|=5x
<=> x+1+x+2+x+3+x+4=5x
<=> 4x+10=5x
<=> 10=5x-4x
<=> x=10
Tính x
a, I 3x-2I<4
b, I3-2xI<x+1
c, I3x-1I>5
d, I3x+1I>I x-2I
e, I x-1I> I x+2I -3
g, Ix-1I+Ix+5I>8
h, Ix-3I +Ix+1I<8
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
I 3x-1I =I\(\dfrac{-1}{3}\)x+2I
\(\left|3x-1\right|=\left|\dfrac{-1}{3}x+2\right|\)
<=> \(\left[{}\begin{matrix}3x-1=\dfrac{-1}{3}x+2\\-3x+1=\dfrac{-1}{3}x+2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}3x-\dfrac{-1}{3}x=2+1\\-3x-\dfrac{-1}{3}x=2-1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}\dfrac{10}{3}x=3\\\dfrac{-8}{3}x=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{9}{10}\\x=\dfrac{-3}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-\dfrac{1}{3}x+2\left(x\ge\dfrac{1}{3}\right)\\3x-1=\dfrac{1}{3}x-2\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{10}{3}x=3\\\dfrac{8}{3}x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{10}\left(tm\right)\\x=-\dfrac{3}{8}\left(tm\right)\end{matrix}\right.\)
tim x :
a) I x+1I+I x -2I+I x+3I = 6
b) 2Ix+2I+I4-xi= 11
c) IxI - I 2x+3I = x-1
tim x :
a) I x+1I+I x -2I+I x+3I = 6
b) 2Ix+2I+I4-xi= 11
c) IxI - I 2x+3I = x-1
TÌM x, y, z, thuộc Q biết:
a,I x+1/2I+I y-3/4I+I z+1I=0
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)
tim x :
a) I x+1I+I x -2I+I x+3I = 6
b) 2Ix+2I+I4-xi= 11
c) IxI - I 2x+3I = x-1
Tìm giá trị nhỏ nhất của biểu thức sau:
B=I x-1I + I x-2I + Ix-3I + 2011Ta có:
\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)
Vậy MinB=2013 khi x=2
Tìm x biết
a) I x - 2I = x b) I x + 2I = x
c) I x - 3,4 I + I 2,6 - x I =0
d) I x I +x = \(\frac{1}{3}\) e) I x I - x =\(\frac{3}{4}\)
a) \(\left|x-2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=x\\x-2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=2\left(loại\right)\\x+x=2\end{matrix}\right.\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ......................
b) \(\left|x+2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=x\\x+2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=-2\left(loại\right)\\x+x=-2\end{matrix}\right.\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy ...............
c) Ta có ;
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Mà :
\(\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|x-3,4\right|+\left|2,6-x\right|\ge\left|x-3,4+2,6-x\right|=\left|-0,8\right|=0,8>0\)
\(\Leftrightarrow\) ko tồn tại \(x\)