a) \(\left|x-2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=x\\x-2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=2\left(loại\right)\\x+x=2\end{matrix}\right.\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ......................
b) \(\left|x+2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=x\\x+2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=-2\left(loại\right)\\x+x=-2\end{matrix}\right.\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy ...............
c) Ta có ;
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Mà :
\(\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|x-3,4\right|+\left|2,6-x\right|\ge\left|x-3,4+2,6-x\right|=\left|-0,8\right|=0,8>0\)
\(\Leftrightarrow\) ko tồn tại \(x\)