cho tam giác mnp vuông tại m biết mp=2cm mn=4cm. tính NP
Cho tam giác MNP vuông tại M MN=8cm, MP=4cm a,tính NP
Tính NP
Xét \(\Delta\)MNP vuông tại M
Ta có NP2 = MN2 + MP2
và MN = 8 cm
và MP = 4 cm
=> NP2 = 82 + 42
=> NP2 = 64 + 16
=> NP2 = 80
=> NP = \(\sqrt{\text{80}}\) = 4\(\sqrt{\text{5}}\) cm.
Áp dụng định lí Pytago trong △MNP vuông tạ M có
MN2+MP2 = NP2
hay 82 +42 = NP2
642 + 162 = NP2
NP2=\(\sqrt{80}\)
NP= \(4\sqrt{5}\)
Xét ΔΔMNP vuông tại M
AD định lí Py-ta-go ta có
\(NP^2=MP^2+MN^2\)
mà MN = 8cm , MP = 4cm
\(=>MP^2=8^2+4^2=64+16=80\)
\(=>NP=\sqrt{80}=4\sqrt{5}\left(cm\right)\)
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
Cho tam giác MNP vuông tại M,MN=3cm,MP=4cm. I là trung điểm NP. Qua I kẻ đường thẳng vuông góc với NP cắt MP,MN lần lượt ở D và E.
a) tam giác MNP đồng dạng với tam giác IDP
b) Tính các cạnh của tam giác IDP
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP có MN=3cm MP= 4cm NP=5cm a, Chứng tỏ rằng tam giác MNP vuông tại M b, vẽ tia phân giác ND(D thuộc MP) từ D vẽ DE vuông góc với NP (E thuộc NP) chứng minh DM=DE c, ED cắt MN tại F chứng minh DE
a: NP^2=MN^2+MP^2
=>ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>DM=DE
Cho tam giác MNP vuông tại M vẽ đường cao MH cho MN =3cm , MP=4cm a) chứng minh tam giác HNM đồng dạng với tam giác MNP b)tính độ dài NP,MH,NH ? GIÚP MÌNH VỚI Ạ !
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Cho tam giác MNP vuông tại M, có MN = 3cm, MP = 4cm,
tia phân giác NI của góc N( I thuộc MP). Vẽ IE vuông góc với NP tại E.
a. Tính độ dài đoạn thẳng NP.
b. Chứng minh: tam giác MNI bằng tam giác ENI
c. Chứng minh: NI là đường trung trực của đoạn thẳng ME.
d. Gọi F là giao điểm của tia NM và EI. Chứng minh NI vuông góc với FP.
Bài 4. (0,5điểm) Cho đa thức f(x) = ax3 + bx2 +cx + d trong đó a,b,c,d là các số nguyên và thỏa mãn 7a +2b + c = 0
Chứng minh rằng f(-1).f(3) là bình phương của một số nguyên
Cho tam giác MNP vuông góc tại M, MN = 4cm, góc N = 60o. Tia phân giác góc N cắt MP tại D. Kẻ DE vuông góc với NP tại E.
a) Chứng minh tam giác END = tam giác MND
b) Chứng minh tam giác MNE đều
c) Tính cạnh NP, MP
a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D