Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Yen Chi
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:48

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

Nhi Phan Yến
Xem chi tiết
Han Nguyen
Xem chi tiết
Ngọc Vĩ
4 tháng 2 2016 lúc 10:05

nhiều quá bạn ơi , bạn k biết câu nào mình giải zúp cho 

Han Nguyen
4 tháng 2 2016 lúc 13:55

hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn

Ngọc Vĩ
4 tháng 2 2016 lúc 13:56

ừm , vậy thì chờ mk xíu

Minh Thiên
Xem chi tiết
Quỳnh Như
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 lúc 18:34

\(f\left(x\right)=\left(x-1\right)\left(x+1\right)\left(1-x\right)\left(x+4\right)=-\left(x-1\right)^2\left(x+1\right)\left(x+4\right)\)

Bảng xét dấu:

loading...

Từ bảng xét dấu trên em tự kết luận dấu của \(f\left(x\right)\)

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 23:34

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 23:40

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 23:49

5.

\(f\left(x\right)=\frac{x^2-3x-2}{-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\frac{3\pm\sqrt{17}}{2}\)

\(f\left(x\right)>0\Rightarrow\frac{3-\sqrt{17}}{2}< x< \frac{3+\sqrt{17}}{2}\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3-\sqrt{17}}{2}\\x>\frac{3+\sqrt{17}}{2}\end{matrix}\right.\)

6.

\(f\left(x\right)=\frac{\left(x-1\right)\left(x^2+x-4\right)}{\left(x-1\right)^2\left(x^2-2x-5\right)}=\frac{x^2+x-4}{\left(x-1\right)\left(x^2-2x-5\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{6}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\left\{\frac{-1\pm\sqrt{17}}{2}\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{17}}{2}< x< 1-\sqrt{6}\\1< x< \frac{-1+\sqrt{17}}{2}\\x>1+\sqrt{6}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{17}}{2}\\1-\sqrt{6}< x< 1\\\frac{-1+\sqrt{17}}{2}< x< 1+\sqrt{6}\end{matrix}\right.\)

Khách vãng lai đã xóa
Ngọc Ánh
Xem chi tiết
ngonhuminh
7 tháng 4 2017 lúc 14:41

a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)

\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)

F(x) =0 khi x={-2,0,1}

F(x) > 0 khi x<1 và khác -2 và 0

f(x) <0 khi x> 1

ngonhuminh
7 tháng 4 2017 lúc 14:55

Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)

tương tự a) dấu của tử phụ thuộc (x-1)(x-2)

Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)

Phần hỗ trợ Lập bảng đây khó thao tác

=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}

Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0

Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định

Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)

khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0

khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0

Trần Khánh Vân
Xem chi tiết
Bùi Quỳnh Hương
24 tháng 2 2016 lúc 9:11

Đặt TT: = \(x^2+3x+2;MT:=-x^2+x+12\)

Lập bảng xét dấu  TT và MT trên tập xác đinh D=R/\(\left\{-3;4\right\}\)

Từ đó suy ra dấu của f(x)

x-\(\infty\)        -3             1             2              4             \(+\infty\)
TT         +            +     0       -     0       +            +
MT         -     0      +              +              +    0      -
f(x)         -     //       +     0      -     0        +     //     -

Từ bảng xét dấu ta được 

\(T\left(f\left(x\right)=0\right)=\left\{1;2\right\}\)   ; \(T\left(f\left(x\right)\ne0\right)=R\) / \(\left\{-3;1;2;4\right\}\)

\(T\left(f\left(x\right)>0\right)=\left(3;1\right)\cup\left(2;4\right)\) ; \(T\left(f\left(x\right)\ge0\right)=\left(-3;1\right)\cup\left(2;4\right)\)

\(T\left(f\left(x\right)<0\right)=\left(-\infty;-3\right)\cup\left(1;2\right)\cup\left(4;+\infty\right)\)

\(T\left(f\left(x\right)\le0\right)=\left(-\infty;-3\right)\cup\left[1;2\right]\cup\left(4;+\infty\right)\)