cho x+y=7; x^2+y^2=25 tính x^4+y^4; x^5+y^5
giúp mik zới
cho x=y:7
CMR các biểu thức trên chia het cho 7
22.x-y chia het cho7
8.x+20.y chia het cho 7
11.x+10.y chia het cho 7
cho x,y nguyên biết A=3x(x-y);B=y^2-x^2, biết x-y chia hết cho 7 .CMR:A-B chia hết cho 7
A-B=3x(x-y)-(y2-x2)
=3x(x-y)-(y2+xy-xy-x2)
=3x(x-y)-[y(y+x)-x(y+x)]
=3x(x-y)+(x-y)(x+y)
=(x-y)(3x+y) luôn chia hết cho 7
Cho :2*x+3*y+1 chia hết cho 7 và 3*x-y+1chia hết cho 7. Chứng minh rằng x, y có cùng số dư khi chia cho 7
cho x= \(7+4\sqrt{3}\), y= \(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé
Có \(x+y=7+4\sqrt{3}+7-4\sqrt{3}=14\)
\(xy=\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)=1\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2=194\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)\(=2702\left[\left(x^2+y^2\right)^2-2x^2y^2\right]-14\)
\(=2702\left(194^2-2\right)-14=101687054\)
Vậy...
cho x=\(7+4\sqrt{3}\), y=\(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé! thanks
\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)
Nếu 2x + 3y chia hết cho 7 và x + y chia hết cho 7 thì X và Y chia hết cho 7
Bài giải
Ta có: 2x + 3y \(⋮\)7 và x + y \(⋮\)7
Suy ra 2(x + y) + y \(⋮\)7
Vì 2(x + y) + y \(⋮\)7 và 2(x + y) \(⋮\)7
Nên y \(⋮\)7
Vì x + y \(⋮\)7 và y\(⋮\)7
Nên x \(⋮\)7
Suy ra x và y đều chia hết cho 7.
cho x ;y thỏa mãn 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 chứng minh rằng x chia hết cho 7 và y chia hết cho 7
cho x-y chia hết cho 7 ( x,y thuộc z )
chứng tỏ :
22x-y chia hết cho 7
8x+20y chia hết cho 7
a) Vì x - y chia hết cho 7 nên tích trên chia hết cho 7.
b) x - y chia hết cho 7 => x và y chia hết cho 7
=> Tổng đó chia hết cho 7
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
1c. Sử dụng kq phần a,b:
\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)
\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)
\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)
\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)
(đpcm)
1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$
$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)
cho x+y+z=0 chứng minh rằng x^7+y^7+z^7=7xyz(x^2y^2+y^2z^2+x^2z^2)