Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Bùi Lê Dình
Xem chi tiết
Trường tiểu học Yên Trun...
Xem chi tiết
Hoàng Phúc
28 tháng 3 2016 lúc 20:45

A-B=3x(x-y)-(y2-x2)

=3x(x-y)-(y2+xy-xy-x2)

=3x(x-y)-[y(y+x)-x(y+x)]

=3x(x-y)+(x-y)(x+y)

=(x-y)(3x+y) luôn chia hết cho 7

Nguyễn Sỹ Mạnh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 8:29

Có \(x+y=7+4\sqrt{3}+7-4\sqrt{3}=14\)

\(xy=\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)\(=2702\left[\left(x^2+y^2\right)^2-2x^2y^2\right]-14\)

\(=2702\left(194^2-2\right)-14=101687054\)

Vậy...

Trang Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 17:58

\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)

BÙI ĐÀM MAI PHƯƠNG
Xem chi tiết
Trần Công Mạnh
11 tháng 2 2020 lúc 19:54

Bài giải

Ta có: 2x + 3y \(⋮\)7 và x + y \(⋮\)7

Suy ra 2(x + y) + y \(⋮\)7

Vì 2(x + y) + y \(⋮\)7 và 2(x + y) \(⋮\)7

Nên y \(⋮\)7

Vì x + y \(⋮\)7 và y\(⋮\)7

Nên x \(⋮\)7

Suy ra x và y đều chia hết cho 7.

Khách vãng lai đã xóa
Hà Đăng Thuận
Xem chi tiết
ngo phuong thao
Xem chi tiết
Tóc Em Rối Rồi Kìa
10 tháng 3 2018 lúc 21:36

a) Vì x - y chia hết cho 7 nên tích trên chia hết cho 7.

b) x - y chia hết cho 7 => x và y chia hết cho 7

=> Tổng đó chia hết cho 7

Minh Hiếu
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 17:53

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

Akai Haruma
28 tháng 10 2021 lúc 17:58

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

Akai Haruma
28 tháng 10 2021 lúc 18:04

1c. Sử dụng kq phần a,b:

\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)

\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)

\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)

\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)

(đpcm)

1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$

$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)

 

nguyễn thị thúy hằng
Xem chi tiết