giải các phương trình sau
a) x4-7x3-8=0
b) |x-2|(x-1)(x+1)(x+2) = 4
1,giải các phương trình sau
a,(x^2-x-10).(x^2-x-8)-8=0
b,(x-1).(x+1).(x+3).(x+5)+15=0
c,15x^4-8x^3-14x^2-8x+15+0
Giải các phương trình sau
a) x(x-1)+2x2-2=0
b) 9x2-1=(3x+1)(2x-3)
a: \(x\left(x-1\right)+2x^2-2=0\)
=>\(x\left(x-1\right)+2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x-1\right)\left(x+2x+2\right)=0\)
=>(x-1)(3x+2)=0
=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
=>\(\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
=>\(\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
=>(3x+1)(x+2)=0
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
a: x(x−1)+2x2−2=0
=>x(x−1)+2(x−1)(x+1)=0
=>(x−1)(x+2x+2)=0
=>(x-1)(3x+2)=0
=>⎡⎣x=−13x=−2
Giải phương trình sau
a, 8x-3=0
b, -5x+7=-3x-9
c, (x+3).(4x-10)=x(x-4)
e,\(\dfrac{1}{x-2}+4=\dfrac{x+3}{x-2}\)
a) 8x-3=0
⇔8x=3
⇔x=\(\dfrac{3}{8}\)
Vậy...
b) -5x+7=-3x-9
⇔-5x+3x=-9-7
⇔-2x=-16
⇔x=8
Vậy...
e)
\(\dfrac{1}{x-2}+4=\dfrac{x+3}{x-2}\)
⇔\(\dfrac{1}{x-2}-\dfrac{x+3}{x-2}=4\)
⇔\(\dfrac{-x-2}{x-2}=4\)
⇔\(x+2=4x-8\)
⇔\(-3x=-10\)
⇔\(x=\dfrac{10}{3}\)
Bài 2: Giải các phương trình sau
a) (x2 - 5x + 7)2 - (2x-5)2 = 0
b) | 2x-1| = 5
c) |2x-1| = |x+5|
d) |3x+1| = x-2
e) |3-2x| = x+2
f) |2x-1| = 5-x
g) |-3x| = x-2
a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)
Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 }
b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = { -2 ; 3 }
c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)
Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 }
d, \(\left|3x+1\right|=x-2\)
TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)
TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)
Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 }
các ý còn lại tương tự
a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)
Vậy: S={3;4;1;2}
b) Ta có: |2x-1|=5
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: S={3;-2}
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Giải các phương trình sau
a)(9x2-4)(x+1)=(3x+2)(x2-1)
b) (x-1)2-1+x2=(1-x)(x+3)
a)
\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left[\left(3x+2\right)\left(x-1\right)\right]\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left(3x^2-3x+2x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+3x-2x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\6x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x-1\right)\left(3x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{-2}{3};\dfrac{1}{2}\right\}\)
b)
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\left(\pm1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-2}\le0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow-3\le x< 2\)
d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)