cho x/y+z + y/z+x + z/x+y=1 . Chứng minh rằng x^2/y+z + y^2/z+x + z^2/x+y=0
Cho x / 2014 = y / 2015 = z / 1016 Chứng minh rằng 4(x - y) . (y - z) = (z - x)^2
Cho x / y = y / z Chứng minh rằng x^2 + y^2 / y^2 + x^2 = x / z
bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx
cho x, y, z >0. chứng minh rằng (y+z)√yz/x + (z+x)√zx/y + (x+y)√xy/z >=2(x+y+z)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(y+z\right)\sqrt{yz}}{x}\ge\frac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\frac{2\sqrt{\left(yz\right)^2}}{x}=\frac{2yz}{x}\)
Tương tự cho 2 BĐT còn lại ta cũng có
\(\frac{\left(x+y\right)\sqrt{xy}}{z}\ge\frac{2xy}{z};\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xz}{y}\)
\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{yz}}{x}+\frac{\left(x+y\right)\sqrt{xy}}{z}+\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\)
Cần chứng minh \(\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)
Áp dụng BĐT AM-GM:
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)
Tương tự rồi cộng theo vế ta có ĐPCM
Khi \(x=y=z\)
cho x,y,z>0 và x^2+y^2-z^2>0.Chứng minh rằng x+y-z>0
\(x^2+y^2-z^2>0\Rightarrow x^2+2xy+y^2-z^2>0\)
\(\Rightarrow\left(x+y\right)^2-z^2>0\)
\(\Rightarrow\left(x+y-z\right)\left(x+y+z\right)>0\)
Mà x;y;z>0 \(\Rightarrow x+y+z>0\)
\(\Rightarrow x+y-z>0\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho x , y , z > 0 . Chứng minh rằng : \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\ge0\)
Cho biết \(-1\le x;y;z\le2\) và \(x+y+z=0\). Chứng minh rằng \(x^2+y^2+z^2\le6\)
cho x, y, z >0. chứng minh rằng (y+z)√yz/x + (z+x)√zx/y + (x+y)√xy/z >= 2.(x+y+z)
Lời giải:
Đặt \((x,y,z)=(a^2,b^2,c^2)\). Bài toán tương đương với:
\(\frac{bc(b+c)}{a}+\frac{ac(a+c)}{b}+\frac{ab(a+b)}{c}\geq 2(a^2+b^2+c^2)\)
Biến đổi ta thấy:
\(\text{VT}=a^2\left ( \frac{b}{c}+\frac{c}{b} \right )+b^2\left ( \frac{a}{c}+\frac{c}{a} \right )+c^2\left ( \frac{a}{b}+\frac{b}{a} \right )\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \frac{a}{b}+\frac{b}{a}\geq 2\\ \frac{a}{c}+\frac{c}{a}\geq 2\\ \frac{b}{c}+\frac{c}{b}\geq 2\end{matrix}\right.\Rightarrow \text{VT}\geq 2(a^2+b^2+c^2)=\text{VP}\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z>0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge\dfrac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\dfrac{2yz}{x}\)
Tương tự cho 2 BĐT còn lại thì được:
\(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2xz}{y}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)
Tiếp tục dùng AM-GM:
\(\dfrac{xy}{z}+\dfrac{yz}{x}\ge2\sqrt{y^2}=2y\)
Tương tự rồi cộng theo vế có:
\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\) (đúng)
Hay ta có ĐPCM. Khi \(x=y=z\)
Đề này à: \(\dfrac{\left(y+z\right)\sqrt{yz}}{x}+\dfrac{\left(z+x\right)\sqrt{zx}}{y}+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge2\left(x+y+z\right)\)
Dùng máy tính kiểm tra. (đề sai không?)
Thế x=1, y=2, z=3
VT = 17,12576389
VP = 12
Cho các số thực x,y,z thỏa mãn: x+y+z=0;−1≤x,y,z≤1x+y+z=0;−1≤x,y,z≤1 Chứng minh rằng: \(x^2+y^4+z^6\text{≤2}\)
hộ mik với
cho x+y+z=0 chứng minh rằng x^2 + z^2 / y^2 + z^2 = x/y