Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi hoa trinh

cho x/y+z + y/z+x + z/x+y=1 . Chứng minh rằng x^2/y+z + y^2/z+x + z^2/x+y=0

Nguyễn Linh Chi
5 tháng 4 2020 lúc 21:19

Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x

Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại

+) TH2: x + y + z \(\ne0\)

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyen Tuan Dung
Xem chi tiết
fan FA
Xem chi tiết
Hoàng nhật Giang
Xem chi tiết
vũ thị ánh dương
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Mai Anh Nguyen
Xem chi tiết
Troll Channel
Xem chi tiết