Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó \(a,b,c\ne0\) đúng với mọi x và y thì: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó\(a,b,c\ne0\)với \(\forall x,y\) thì:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
Chu mi ngaa!!!
Chứng minh : Nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\)
Với a,b,c khác 0 và với mọi x,y thì:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
@Akai Haruma Giúp em với ạ
Bạn xem lại đề xem có sai không? $d$ từ đâu ra vậy?
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\), trong đó \(a,b,c\ne0\) và khác nhau thì ta có:
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Chứng minh các đẳng thức sau:
a, \(\frac{3x}{x+y}=\frac{-3x\left(x-y\right)}{y^2-x^2}\left(x\ne-y,x\ne y\right)\)
b, \(\frac{x-2}{-x}=\frac{8xy^2}{12ay}\left(a\ne0,y\ne0\right)\)
c, \(\frac{x+y}{3a}=\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}\left(a\ne0,x\ne-y\right)\)
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)
1.Chứng minh rằng: \(x^5+y^5\ge x^4y+xy^4\)với \(x,y\ne0;x+y\ge0\)
2.Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+a\right)\left(a+c\right)}{abc}\)
Các thánh lại giải bài này đi!!!
Em mới lớp 7 nên chỉ biết giải bài 2 thôi
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\) Thao vào P ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)
1
xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)
\(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)
tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)
Cho các đơn thức:\(A=\frac{-1}{2}x^2y.\left(1\frac{1}{2}\right)xy\);\(B=\left(-xy\right)^2y\);\(C=\left(\frac{-1}{2}y\right)^3x^2\);\(D=\left(-x^2y^2\right).\left(\frac{-2}{3}x^3y\right)\)
a)Trong các đơn thức trên đơn thức nào đồng dạng.
b)Xạc định dấu của x và y biết các đơn thức A;C;D có cùng giá trị dương.
c)Chứng minh rằng trong ba đơn thức A;B;D có ít nhất một đơn thức âm với mọi x,y khác 0.
d)Tính giá trị của D tại \(x=-1;y=\frac{-4}{25}.\)
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
a) Chứng minh với mọi số thực a,b,c a cs \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
2) 1/x - 1/y - 1/z = 1
=> (1/x - 1/y - 1/z)^2 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)