Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trân lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

O Đì
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 18:19

loading...  loading...  

Thảo Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 19:46

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

Akai Haruma
4 tháng 4 2021 lúc 3:02

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

le thu
Xem chi tiết
Hoàng Nguyễn Văn
30 tháng 4 2019 lúc 10:35

a) coi m là tham số ta được:

 Δ,=(-2)^2-1.m = 4-m 

Pt có no <=> Δ,>=0 <=> m<=4

b) pt có2nghiệm là 

x1= 2 - căn (4-m)  , x2=  2+ căn (4-m)

thay vào 1/x1 +1/x2 =4 ta được:

1/(2-căn (4-m) +1/(2+căn (4-m) =4

<=>[2+ căn (4-m) +2 -căn (4-m)]  /  [ 4-4-m] =4

<=> 4/ -m=4

<=> m=-1

Lê Hồ Trọng Tín
30 tháng 4 2019 lúc 10:40

a) Để phương trình:x2-4x+m có nghiệm thì:\(\Delta\)'=(-2)2-1.m\(\ge\)0<=>4-m\(\ge\)0<=>m\(\le\)4

b)Ta có:\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{x_1+x_2}{x_1.x_2}\)=4 (*)

Do x1,xlà 2 nghiệm của phương trình x2-4x+m

Nên theo Định lý Viète, ta được: \(\hept{\begin{cases}x_1+x_2=4\\x_1.x_x=m\end{cases}}\)

Thay vào đẳng thức (*), ta được::\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)=\(\frac{4}{m}\)=4<=>m=1

phuonganh
Xem chi tiết
Vô danh
16 tháng 5 2022 lúc 16:46

Thay `x=-2` vào pt ta có:

\(\left(m-3\right).\left(-2\right)^2-2.m.\left(-2\right)+m+2=0\\ \Leftrightarrow\left(m-3\right).4+4.m+m+2=0\\ \Leftrightarrow4m-12+4m+m+2=0\\ \Leftrightarrow9m-10=0\\ \Leftrightarrow m=\dfrac{10}{9}\)

Vậy để pt có 1 nghiệm là `x=-2` thì `m=10/9`

Trần Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 0:06

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

ngan kim
Xem chi tiết
Kiều Vũ Linh
22 tháng 1 lúc 7:23

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

lnthaovy0502
Xem chi tiết
lnthaovy0502
27 tháng 12 2020 lúc 15:43

Help me

Nguyễn Việt Lâm
27 tháng 12 2020 lúc 16:05

\(\Leftrightarrow\left(m^2+3\right)x-m^2-3-m=\left(3-2m\right)x-5\)

\(\Leftrightarrow\left(m^2+3-3+2m\right)x=m^2+m+3-5\)

\(\Leftrightarrow\left(m^2+2m\right)x=m^2+m-2\)

Pt có tập nghiệm R khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2+2m=0\\m^2+m-2=0\end{matrix}\right.\) \(\Leftrightarrow m=-2\)

Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Nguyễn Thùy Linh
Xem chi tiết

a, m\(x\) -2\(x\) + 3 = 0

Với m  = -4 ta có :

-4\(x\) - 2\(x\) + 3 = 0

-6\(x\)  + 3 = 0

6\(x\) = 3

\(x\) = 3 : 6

\(x\) = \(\dfrac{1}{2}\)

b,  Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0

                   2m - 1 = 0

                  2m = 1

                     m = \(\dfrac{1}{2}\) 

c, m\(x\) - 2\(x\) + 3 = 0

   \(x\)( m -2) + 3 = 0

  \(x\) = \(\dfrac{-3}{m-2}\)

   Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2

d, Để phương trình có nghiệm nguyên thì:   -3 ⋮ m -2

   m - 2 \(\in\) { - 3; -1; 1; 3}

  m \(\in\) { -1; 1; 3; 5}