\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình: \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình:
\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Xét x=0 không phải là nghiệm của pt, ta chia cả tử và mẫu của các phân thức ở VT của pt cho x:
\(\Rightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}+2=t\). Khi đó pt mang dạng:
\(\frac{2}{t-3}-\frac{7}{t+3}=1\Leftrightarrow\frac{2t+6-7t+21}{t^2-9}=1\Leftrightarrow27-5t=t^2-9\)
\(\Leftrightarrow t^2+5t-36=0\Leftrightarrow t^2-4t+9t-36=0\)
\(\Leftrightarrow t\left(t-4\right)+9\left(t-4\right)=0\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+\frac{2}{x}=2\\3x+\frac{2}{x}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2.x.\frac{1}{3}+\frac{1}{9}=-\frac{5}{9}\left(l\right)\\x^2+2.x.\frac{11}{6}+\frac{121}{36}=\frac{97}{36}\end{cases}\Rightarrow}\left(x+\frac{11}{6}\right)^2=\frac{97}{36}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{97}-11}{6}\\x=\frac{-\sqrt{97}-11}{6}\end{cases}}\). Vậy tập nghiệm của pt là \(S=\left\{\frac{\sqrt{97}-11}{6};\frac{-\sqrt{97}-11}{6}\right\}.\)
giải phương trình sau: \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Nhận thấy \(x=0\) ko là nghiệm, pt tương đương:
\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}-1=t\)
\(\Rightarrow\frac{2}{t}-\frac{7}{t+6}=1\)
\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)
\(\Leftrightarrow t^2+11t-12=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+2=0\\3x^2+11x+2=0\end{matrix}\right.\)
Giải phương trình:
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
b) \(\frac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)
c) \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được
b/ Đặt \(\left(x+1\right)^2=t\ge0\)
\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)
c/ ĐKXĐ: bla bla bla...
Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:
\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}-1=t\)
\(\frac{2}{t}-\frac{7}{t+6}=1\)
\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)
\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)
Bấm máy
Giải phương trình:
a) \(\frac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)
b) \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
có (x+1)^2+2
=x^2+2x+3
Đặt x^2+2x+3=a
=> x^2+2x+4=a+1
x^2+2x+7=a+4
pt <=>(a+4)/a=a+1
=> a^2+a=a+4
<=>a^2=4
<=>a=2 do x^2+2x+3>0
=> x^2+2x+3=2
<=> (x+1)^2=0
<=> x+1=0
<=> x=-1.
\(\frac{x-3}{3xy}\)+ \(\frac{5x+3}{3xy}\)
\(\frac{5x-7}{2x-3}+\frac{4-3x}{2x-3}\)
\(\frac{3x+5}{7x-1}-\frac{6-4x}{7x-1}\)
\(\frac{11x-7}{3-5x}-\frac{6x+4}{5x-3}\)
\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(\frac{1}{2x-10}+\frac{2x}{3x^2-15x}\)
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
Giải các phương trình sau:
a, 2x - 3 = 5x + 6
b, ( 2x + 1 ).( 3x - 2 ) = ( 5x - 8 ).( 2x + 1 )
c, \(\frac{2x+1}{3}-\frac{7x+5}{15}=\frac{2x-2}{5}\)
d,\(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right).\left(5-x\right)}\)
e, ( x2 + 2x )2 + 9x2 + 18x + 20 = 0
Giúp ik a~
a , 2x -3 = 5x + 6
2x -5x=6+3
-3x = 9
x =9 :(-3)
x= -3
a) 2x-5x=3+6
-3x=9
x=-3
vậy........
b)(2x+1).(3x-2)-(5x-8).(2x+1)=0
(2x+1).(3x-2-2x-1)=0
(2x-1).(x-3)=0
==>x=1/2 ; x=3
c)(2x+1).5-(7x+5)=(2x-2).3
10x+5-7x-5=6x-6
3x=6x-6
3x-6x=6
-3x=6
x=-2
a) 2x - 3 = 5x + 6
<=> -3x = 9
<=> x = -3
b) (2x + 1).(3x - 2) = (5x - 8).(2x + 1)
<=> 6x2 - 4x + 3x - 2 = 10x2 + 5x - 16x -8
<=> -4x2 - 10x + 6 = 0
<=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
c) \(\frac{2\text{x}+1}{3}-\frac{7\text{x}+5}{15}=\frac{2\text{x}-2}{5}\)
<=> \(\frac{5.\left(2\text{x}+1\right)}{5.3}-\frac{7\text{x}+5}{15}=\frac{3.\left(2\text{x}-2\right)}{3.5}\)
<=> 10x + 5 - 7x + 5 - 6x + 6 = 0
<=> -3x + 16 = 0
<=> -3x = -16
<=> x = \(\frac{16}{3}\)
d) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3\text{x}}{\left(x-2\right).\left(5-x\right)}\)
<=> \(\frac{3\text{x}\left(x-5\right)-x\left(x-2\right)}{\left(x-2\right).\left(5-x\right)}=\frac{3\text{x}}{\left(x-2\right).\left(5-x\right)}\)
<=> 3x2 - 15x - x2 + 2x - 3x = 0
*Câu e dễ quá, bạn tự làm nhé :v*
Giải các phương trình :
\(\frac{2x-1}{3x^2+7x+2} +\frac{3}{9x^2+15+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x-2}\)
giúp mink voiwis nha
Giair pt:
c, x ( 3x-1) (3x+1) (3x+2) =8
d, (x+1) (2x+3) (2x+5) (x+3)=45
e,x4+ 3x3 - 15x2 - 19x + 3 = 0
f, \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{1}{3}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)