Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng nguyễn tiến
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
meme
27 tháng 8 2023 lúc 15:00

Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.

Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2

Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2

Giải phương trình trên, ta có thể tính được độ dài AM.

Ha My
Xem chi tiết
Akai Haruma
17 tháng 2 2020 lúc 23:02

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

Khách vãng lai đã xóa
Akai Haruma
2 tháng 2 2020 lúc 20:04

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

Khách vãng lai đã xóa
Nguyên Thủy Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 22:55

a: AC^2=BA^2+BC^2

=>ΔABC vuông tại B

b: Xét ΔABM và ΔANM có

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

=>góc ANM=90 độ

=>MN vuông góc AC

c: AB=AN

MB=MN

=>AM là trung trực của BN

d: CT//BN

BN vuông góc AM

=>AM vuông góc CT

Xét ΔATC có

AM,CB là đường cao

AM cắt CB tại M

=>M là trực tâm

=>TM vuông góc AC

mà MN vuông góc AC

nên T,M,N thẳng hàng

Vũ Ngọc Anh
Xem chi tiết
Nguyễn Đình Vũ
18 tháng 2 2022 lúc 14:25
Haha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Khách vãng lai đã xóa
Vũ Lê Hằng
6 tháng 4 2022 lúc 16:06

1MM=10CM

Khách vãng lai đã xóa
Vũ Lê Hằng
6 tháng 4 2022 lúc 16:46

tớ hỏi đường thẳng abcd bang 12cm hỏi chiều độ dài = bao nhieeucm vuông?

Khách vãng lai đã xóa
Hồ Thị Cẩm Ly
Xem chi tiết
phạm minh anh
6 tháng 6 2018 lúc 15:54

xin lỗi chi nha

Nguyễn Đức Triều
24 tháng 7 2018 lúc 22:31

ầdddadffááfààfdáfsafda

Hai Anh
Xem chi tiết
Tú tigoma
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
3 tháng 3 2021 lúc 0:44

Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:

$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AD}{DC}.2.3=1$

$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$

$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$

Akai Haruma
3 tháng 3 2021 lúc 0:47

Hình vẽ:

undefined