X x2=28
x:5=6
x+34=67
a) 4(x^2-6x+9)-16(4x^2+28x+49)=0
b)(x2-16)^2-(x-4)^2=0
/ : căn bậc 2
Giúp với, cảm ơn.
a)(Sửa đề) \(4(x^2-6x+9)-16(4x^2+28x+49)=0\)
\(⇔(2x-6)^2-(8x+28)^2=0\)
\(⇔(-6x-34)(10x+22)=0\)
\(⇔\left[\begin{array}{} -6x-34=0\\ 10x+22=0 \end{array}\right.\)
\(⇔\left[\begin{array}{} x=-\dfrac{17}{3}\\ x=-\dfrac{11}{5} \end{array}\right.\)
b)(Sửa đề 1) \((2x-16)^2-(x-4)^2=0\)
\(⇔(3x-20)(x-12)=0\)
\(⇔\left[\begin{array}{} 3x-20=0\\ x-12=0 \end{array}\right.\)\(⇔\left[\begin{array}{} x=\frac{20}{3}\\ x=12 \end{array}\right.\)
(Sửa đề 2) \((x^2-16)^2-(x-4)^2=0\)
\(⇔(x^2-x-12)(x^2+x-20)=0\)
\(⇔(x-4)^2(x+3)(x+5)=0\)
\(⇔\left[\begin{array}{} (x-4)^2=0\\\ x+3=0\\ x+5=0 \end{array}\right.\)\(⇔\left[\begin{array}{} x=4\\\ x=-3\\ x=-5 \end{array}\right.\)
Đâu là cách thuận tiện nhất:
246 × 67 + 34 × 246 - 246
a/ 246 x ( 67 + 34 - 1)
b/ 246 x ( 67 + 34)
c/ 246 x (67 + 34 + 1)
d/ 246 x (67 + 34) - 246
Giúp tớ cách giải chi tiết với
a) 4(x^2-6x+9)-16(4x^2+28x+49)=0
b)(x2-16)^2-(x-4)^2=0
c)3(x^2-2)=(2x-/2)(x+/2)
/ : căn bậc 2
^ : mũ
x^2+6x+9
10x-25-x^2
8x^3-1/8
1/25x^2-64y^2
1) \(x^2+6x+9\)
\(=\left(x+3\right)^2\)
2) \(10x-25-x^2\)
\(=-25+10x-x^2\)
\(=-\left(5-x\right)^2\)
3) \(8x^3-\dfrac{1}{8}\)
\(=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4) \(\dfrac{1}{25}x^2-64y^2\)
\(=\left(\dfrac{1}{5}x\right)^2-\left(8y\right)^2\)
\(=\left(\dfrac{1}{5}x+8y\right)\left(\dfrac{1}{5}x-8y\right)\)
\(x^2+6x+9=\left(x+3\right)^2\)
\(10x-25-x^2=-\left(x-5\right)^2\)
\(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Tính:
a)(x-2).(x+2)-(x2-2x-4)
b)(x2-10xy+25y2):(5y-x)
c)(28x-9x3+x3-30):(x-3)
\(a,=x^2-4-x^2+2x+4=2x\\ b,=\left(x-5y\right)^2:\left(5y-x\right)=\left(5y-x\right)^2:\left(5y-x\right)=5y-x\\ c,Sửa:\left(28x-9x^2+x^3-30\right):\left(x-3\right)\\ =\left(x^3-3x^2-6x^2+18x+10x-30\right):\left(x-3\right)\\ =\left(x-3\right)\left(x^2-6x+10\right)\left(x-3\right)=x^2-6x+10\)
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
Giải các phương trình:
a) 3 x − 3 4 − 2 − 4 x = 0 ;
b) x 2 − 4 x + 7 − 12 x + 7 = 0 ;
c) 4 − 4 + x + x x 2 − 16 = 0 ;
d) x 2 + 6 x − 7 = 0 .
Cho đa thức p(x)= x^2 + bx +c ( b , c thuộc Z )
Biết x^4 + 6x^2 +25 và 3x^2 +4x^2 +28x +5 đều chia hết cho p(x) tìm p(x)
Tìm x:
√(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2
√(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 (1)
Có: \(\sqrt{x^2-6x+11}=\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\)
(Dấu = xảy ra khi x = 3)
\(\sqrt{x^2-6x+13}=\sqrt{\left(x-3\right)^2+4}\ge\sqrt{4}=2\)
(Dấu = xảy ra khi x = 3)
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
(Dấu = xảy ra khi x = 2)
Nhận xét PT (1):
\(VT\ge3+\sqrt{2}\)
\(VP=3+\sqrt{2}\)
Nên: √(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 khi: x = 3 và x = 2
=> PT vô nghiệm